BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Khan Sadaf (The Islamia University of Bahawalpur, Punjab, Pakistan), Tahir Muhammad H. (The Islamia University of Bahawalpur, Punjab, Pakistan), Jamal Farrukh (The Islamia University of Bahawalpur, Punjab, Pakistan)
Analysis of COVID-19 and Cancer Data using New Half-Logistic Generated Family of Distributions
Operations Research and Decisions, 2023, vol. 33, no. 4, s. 71-95, rys., wykr., tab., bibliogr. 20 poz.
COVID-19, Choroby nowotworowe, Badania statystyczne
COVID-19, Cancer, Statistical surveys
We focus on a specific sub-model of the proposed family that we call the new half logistic- Fréchet. This sub-model stems from a new generalisation of the half-logistic distribution which we call the new half-logistic-G. The novelty of proposing this new family is that it does not include any additional parameters and instead relies on the baseline parameter. Standard statistical formulas are used to show the forms of the density and failure rate functions, ordinary and incomplete moments with generating functions, and random variate generation. The maximum likelihood estimation procedure is used to estimate the set of parameters. We conduct a simulation analysis to ensure that our calculations are converging with lower mean square error and biases. We use three real-life data sets to equate our model to well-established existing models. The proposed model outperforms the well- established four parameters beta Fréchet and exponentiated generalized Fréchet for some reallife results, with three parameters such as half-logistic Fréchet, exponentiated Fréchet, Zografos-Balakrishnan gamma Fréchet,Topp-Leonne Fréchet, and Marshall-Olkin Fréchet and two-parameter classical Fréchet distribution. (original abstract)
The Main Library of the Cracow University of Economics
Full text
  1. Abbas, S., Taqi, S. A., Mustafa, F., Murtaza, M., and Shahbaz, M. Q. Topp-Leone inverse Weibull distribution: Theory and application. European Journal of Pure and Applied Mathematics 10, 5 (2017), 1005-1022.
  2. Al-Marzouki, S., Jamal, F., Chesneau, C., and Elgarhy, M. Topp-Leone odd Fréchet generated family of distributions with applications to COVID-19 data sets. Computer Modeling in Engineering & Sciences 125, 1 (2020), 437-458.
  3. Alzaatreh, A., Lee, C., and Famoye F. A new method for generating families of continuous distributions. Metron 71, 1 (2013), 63-79.
  4. Barreto-Souza, W., Cordeiro, G. M., and Simas, A. B. Some results for beta Fréchet distribution. Communications in Statistics - Theory and Methods 40, 5 (2011), 798-811.
  5. Cordeiro, G. M., Alizadeh, M., and Diniz Marinho, P. R. The type I half-logistic family of distributions. Journal of Statistical Computation and Simulation 86, 4 (2016), 707-728.
  6. Cordeiro, G. M., Ortega, E. M. M., and da Cunha, D. C. C. The exponentiated generalized class of distributions. Journal of Data Science 11, 1 (2013), 1-27.
  7. da Silva, R. V., de Andrade, T. A. N., Maciel, D. B. M., Campos, R. P. S., and Cordeiro, G. M. A new lifetime model: The gamma extended Fréchet distribution. Journal of Statistical Theory and Applications 12, 1 (2013), 39-54.
  8. Fréchet, R. M. On the probability law of maximum deviation. Annales de la Société Polonaise de Mathématique 6 (1927), 93-116, (in French).
  9. Granzotto, D. C. T., Louzada, F., and Balakrishnan, N. Cubic rank transmuted distributions: inferential issues and applications. Simulation 87, 14 (2017), 2760-2778.
  10. Gupta, R. D., and Kundu, D. Exponentiated exponential family: An alternative to gamma and Weibull distributions. Biometrical Journal 43, 1 (2001), 117-130.
  11. Kotz, S., and Nadarajah, S. Kotz-Type Distribution. In Encyclopedia of Statistical Sciences, N. Balakrishnan, N. L. Johnson and S. Kotz, Eds., 2nd. ed. John Wiley & Sons, Ltd, 2006.
  12. Krishna, E., Jose, K. K., and Ristić, M. M. Applications of Marshall-Olkin Fréchet distribution. Communications in Statistics - Simulation and Computation 42, 1 (2013), 76-89.
  13. Lee E. T., and Wang J. W. Statistical Methods for Survival Data Analysis. Vol. 476. John Wiley & Sons, 2003.
  14. Lehmann, E. L. The power of rank tests. Annals of Mathematical Statistics 24, 1 (1953), 23-43.
  15. Marshall, A. W., and Olkin, I. A new method for adding parameters to a family of distributions with application to the exponential and Weibull families. Biometrika 84, 3 (1997), 641-652.
  16. Mudholker, G. S., and Srivastava, D. K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions of Reliability 42, 2 (1993), 299-302.
  17. Nadarajah, S., and Gupta, A. K. The beta Fréchet distribution. Far East Journal of theoretical Statistics 14, 1 (2004), 15-24.
  18. Nadarajah, S., and Kotz, S. The exponentiated type distributions. Acta Applicandae Mathematica 92, 2 (2006), 99-111.
  19. Shaw, W. T., and Buckley, I. R. C. The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map, 2009. Available from
  20. Tahir, M. H., Hussain, M. A., and Cordeiro, G. C. A new flexible generalized family for constructing many families of distributions. Journal of Applied Statistics 23 (2021), 1615-1635.
Cited by
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu