BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Kulykovets Olena (Warsaw University of Life Science - SGGW, Poland)
Title
Automation of Production Processes in Agriculture Using Selected Artificial Intelligence Tools
Automatyzacja procesów produkcyjnych w rolnictwie z wykorzystaniem wybranych narzędzi sztucznej inteligencji
Source
Annals of the Polish Association of Agricultural and Agribusiness Economists, 2023, T. 25, z. 4, s. 255-267, tab., bibliogr. 41 poz.
Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu
Keyword
Rolnictwo, Sztuczna inteligencja, Proces produkcji
Agriculture, Artificial intelligence, Production process
Note
JEL Classification: Q10, Q16
streszcz., summ.
Abstract
W branży rolniczej następuje transformacyjna zmiana w kierunku większej wydajności i zrównoważonego rozwoju, przez integrację narzędzi sztucznej inteligencji (AI) z różnymi procesami produkcyjnymi. W artykule przedstawiono przegląd wybranych narzędzi AI i ich praktyczne zastosowanie w rolnictwie, rzucając światło na ich głęboki wpływ na zwiększanie plonów, zarządzanie zasobami i ogólną produktywność gospodarstwa. Przedstawiono także przegląd definicji sztucznej inteligencji (AI) oraz kalendarium rozpoczynające się od pierwszej wzmianki o sztucznej inteligencji, a kończące na teraźniejszości, umożliwiające lepsze zrozumienie opisywanego zagadnienia. Podkreślono znaczenie odpowiedzialnego rozwoju i integracji sztucznej inteligencji. Omówiono także etyczne i społeczne skutki sztucznej inteligencji w rolnictwie, takie jak przenoszenie stanowisk pracy i obawy dotyczące prywatności danych. Oczekuje się, że przyjęcie technologii sztucznej inteligencji odegra kluczową rolę w zaspokajaniu światowego zapotrzebowania na żywność, a jednocześnie pozwoli stawić czoła wyzwaniom stojącym przed sektorem rolnictwa. Jednak niezwykle istotne jest odpowiedzialne podejście do tych postępów, zapewniając maksymalizację korzyści ze sztucznej inteligencji w rolnictwie przy jednoczesnej minimalizacji potencjalnych wad.(abstrakt oryginalny)

The agriculture industry is experiencing a transformative shift towards greater efficiency and sustainability through the integration of artificial intelligence (AI) tools into various production processes. This article presents an overview of selected AI tools and their practical utilization in agriculture, shedding light on their profound impact on enhancing crop yields, resource management, and overall farm productivity. The article also provides an overview of the definition of artificial intelligence and a timeline starting with the first mention of artificial intelligence and ending with the present to better understand the described issue. The article highlights the importance of responsible AI development and integration. The ethical and societal implications of AI in agriculture, such as job displacement and data privacy concerns, are also addressed. The adoption of AI technologies is expected to play a vital role in meeting the global food demand while addressing the challenges faced by the agriculture sector. However, it is crucial to navigate these advancements responsibly, ensuring that the benefits of AI in agriculture are maximized while minimizing potential drawbacks.(original abstract)
Accessibility
The Main Library of the Cracow University of Economics
Full text
Show
Bibliography
Show
  1. AI (Artificial Intelligence). 2023. Merriam-Webster.com Dictionary, https://www.merriam-webster.com/dictionary/artificial%20intelligence, access: 10.10.2023.
  2. Anitha Mary X., Vladimir Popov, Kumudha Raimond, Iruthayasamy Johnson, Joseph S. Vijay. 2022. Scope and recent trends of artificial intelligence in Indian agriculture. [In] The digital agricultural revolution, eds. R. Bhatnagar, N.K. Tripathi, N. Bhatnagar and C.K. Panda, 1-24. John Wiley & Sons. DOI: 10.1002/9781119823469.ch1.
  3. Anyoha Rockwell. 2017. The history of Artificial Intelligence. SITN, https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/, access: 12.10.2023.
  4. Baker Donald Nelson. 1983. GOSSYM: A simulator of cotton crop growth and yield. USA: South Carolina Agricultural Experiment Station.
  5. Bannerjee Gouravmoy, Uditendu Sarkar, Swarup Das, Indrajit Ghosh. 2018. Artificial Intelligence in agriculture: A literature survey. International Journal of Scientific Research in Computer Science Applications and Management Studies 7 (3): 1-6.
  6. Banthia Vineet Banthia, Ganesh Chaudaki. 2021. The study on use of Artificial Intelligence in agriculture. Journal of Advanced Research in Applied Artificial Intelligence and Neural Network 5 (2): 18-22.
  7. Bhardwaj Harshit, Pradeep Tomar, Aditi Sakalle, Uttam Sharma. 2021. Artificial intelligence and its applications in agriculture with the future of smart agriculture techniques. [In] Artificial Intelligence and IoT-based technologies for sustainable farming and smart agriculture, eds. Pradeep Tomar, Gurjit Kaur, 25-39. IGI Global. DOI: 10.4018/978-1-7998-1722-2.ch002.
  8. Buchanan Bruce G. 2005. A (very) brief history of Artificial Intelligence. AI Magazine 26 (4): 53-60. DOI: 10.1609/aimag.v26i4.1848.
  9. Chen Shih-Fang, Yan-Fu Kuo. 2022. Artificial intelligence for image processing in agriculture. [In] Sensing, data managing, and control technologies for agricultural systems. Agriculture automation and control, eds. S. Ma, T. Lin, E. Mao, Z. Song, K.C. Ting, 159-183. Springer, Cham. DOI: 10.1007/978-3-031-03834-1_7.
  10. Copeland B. Jack. 2023. Is artificial general intelligence (AGI) possible? Encyclopedia Britannica, https://www.britannica.com/technology/artificial-intelligence/Is-artificial-general-intelligence-AGI-possible, access: 16.10.2023.
  11. Dharmaraj V., Chinnusamy Vijayanand. 2018. Artificial Intelligence (AI) in agriculture. International Journal of Current Microbiology and Applied Sciences 7 (12): 2122-2128. DOI: 10.20546/ijcmas.2018.712.241.
  12. EC (European Commission). 2020. White Paper on Artificial Intelligence. A European approach to excellence and trust. Brussels, 19.2.2020 COM(2020) 65 final, https://commission.europa.eu/system/files/2020-02/commission-white-paper-artificial-intelligence-feb2020_en.pdf, access: 12.10.2023.
  13. EPRS (European Parliamentary Research Service). 2023. Artificial Intelligence act. EU Legislation in Progress. PE 698.792, June 2023, COM(2021)206 21.4.2021, https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI(2021)698792_EN.pdf, access: 13.10.2023.
  14. FAO. 2017. The future of food and agriculture - Trends and challenges. Rome, https://www.fao.org/3/i6583e/i6583e.pdf, access: 10.10.2023.
  15. FAO. 2022. The future of food and agriculture - Drivers and triggers for transformation. The future of food and agriculture, Rome, https://www.fao.org/3/cc0959en/cc0959en.pdf, access: 12.10.2023.
  16. Fariza Sabrina, Shaleeza Sohai, Farnaz Farid, Sayka Jahan, Farhad Ahamed, Steven Gordon. 2022. An interpretable Artificial Intelligence based smart agriculture system. Computers, Materials & Continua 72 (2): 3777-3797. DOI: 10.32604/cmc.2022.026363.
  17. Gambhire Akshaya, Bilal N. Shaikh Mohammad. 2020. Use of artificial intelligence in agriculture. [In] Proceding of the 3rd International Conference on Advances in Science & Technology (ICAST). DOI: 10.2139/ssrn.3571733.
  18. Hemming Silke, Feije de Zwart, Anne Elings, Isabella Righini, Anna Petropoulou. 2019. Remote control of greenhouse vegetable production with artificial intelligence - greenhouse climate, irrigation, and crop production. Sensors 19 (8):1807. DOI: 10.3390/s19081807.
  19. Javaid Mohd, Abid Haleem, Ibrahim H. Khan, Rajiv Suman. 2023. Understanding the potential applications of Artificial Intelligence in agriculture sector. Advanced Agrochem 2 (1): 15-30. DOI: 10.1016/j.aac.2022.10.001.
  20. Jha Kirtan. Aalap Doshi, Poojan Patel, Manan Shah. 2019. A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture 2: 1-12. DOI: 10.1016/j.aiia.2019.05.004.
  21. Karijan Ron. 2023. The history of artificial intelligence: Complete AI timeline. TechTarget, https://www.techtarget.com/searchenterpriseai/tip/The-history-of-artificial-intelligence-Complete-AI-timeline, access: 14.10.2023.
  22. Martiniello P. 1988. Development of a database computer management system for retrieval on varietal field evaluation and plant breeding information in agriculture. Computers and electronics in agriculture 2 (3): 183-192. DOI: 10.1016/0168-1699(88)90023-3.
  23. Miranda Juan C., Jordi Gené-Mola, Manuela Zude-Sasse, Nikos Tsoulias, et al. 2023. Fruit sizing using AI: A review of methods and challenges. Postharvest Biology and Technology 206: 1-18. DOI: 10.1016/j.postharvbio.2023.112587.
  24. Mohr Svenja, Rainer Kühl. 2021. Acceptance of artificial intelligence in German agriculture: an application of the technology acceptance model and the theory of planned behavior. Precision Agriculture 22 (2): 1816-1844. DOI: 10.1007/s11119-021-09814-x.
  25. Piwowar Kuba, Zuzanna Jakubik, Grzegorz Rzeźnik, Joanna Czernicka. 2023. Zastosowania sztucznej inteligencji w gospodarce. Przegląd wybranych inicjatyw i technologii z rekomendacjami dla przedsiębiorców. Raport tematyczny nr 3 (Applications of artificial intelligence in the economy. Review of selected initiatives and technologies with recommendations for entrepreneurs. Thematic Report No. 3). Krajowa Inteligentna Specjalizacja, https://www.parp.gov.pl/storage/publications/pdf/Raport-tematyczny_zastosowania_sztucznej_inteligencji_w_gospodarce_20230616.pdf, access: 12.10.2023.
  26. Rodzalan Shazaitul Azreen, Ong Guan Yin, Noor Nazihah Mohd Noor. 2020. A foresight study of artificial intelligence in the agriculture sector in Malaysia. Journal of Critical Reviews 7 (8): 1339-1346.
  27. Shankar Priyamvada, Nicolas Werner, Sandra Selinger, Ole Janssen. 2020. Artificial Intelligence driven crop protection optimization for sustainable agriculture. [In] 2020 IEEE/ITU International Conference on Artificial Intelligence for Good (AI4G). Geneva, Switzerland. 21-25 September 2020. DOI: 10.1109/AI4G50087.2020.9311082.
  28. Sharma Robin. 2021. Artificial intelligence in agriculture: a review. [In] The 5th International Conference on Intelligent Computing And Control Systems (ICICCS). Madurai, India, 06-08 May 2021. DOI: 10.1109/ICICCS51141.2021.9432187.
  29. Sitharthan R., M. Rajesh, S. Vimal, Kumar Saravana E., S. Yuvaraj, Kumar Abhishek, Jacob Raglend I., K. Vengatesan. 2023. A novel autonomous irrigation system for smart agriculture using AI and 6G enabled IoT network. Microprocessors and Microsystems 101: 104905. DOI: 10.1016/j.micpro.2023.104905.
  30. Smith Mattew J. 2018. Getting value from artificial intelligence in agriculture. Animal Product Science 60 (1): 46-54. DOI: 10.1071/AN18522.
  31. Subeesh A., C.R. Mehta. 2021. Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture 5: 278-291. DOI: 10.1016/j.aiia.2021.11.004.
  32. Tetila Everton C., Bruno B. Machado, Nicolas A. Belete, David A. Guimaraes, Hemerson Pistori. 2017. Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geoscience and Remote Sensing Letters 14 (12): 2190-2194. DOI: 10.1109/LGRS.2017.2743715.
  33. Thorpe Kevin W., Richard L. Ridgway, Richard E. Webb. 1992. A computerized data management and decision support system for gypsy moth management in suburban parks. Computers and Electronics in Agriculture 6 (4): 333-345. DOI: 10.1016/0168-1699(92)90004-7.
  34. Tzachor Asaf, Medha Devare, Brian King, Shahar Avin, Seán Ó Héigeartaigh. 2022. Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nature Machine Intelligence 4: 104-109. DOI: 10.1038/s42256-022-00440-4.
  35. Upadhyay Nidhi, Neeraj Gupta. 2021. A survey on diseases detection for agriculture crops using Artificial Intelligence. [In] International Conference on Information Systems and Computer Networks (ISCON). Mathura, India, 22-23 October 2021. DOI: 10.1109/ISCON52037.2021.9702513.
  36. Vyas Sonali Vyas, Mohammad Shabaz, Prajjawal Pandit, L. Rama Parvathy. 2022. Integration of Artificial Intelligence and blockchain technology in healthcare and agriculture. Journal of Food Quality 2022: 4228448. DOI: 10.1155/2022/4228448.
  37. Wang Qifan, Man Cheng, Shuo Huang, Zhenjiang Cai, Jinlin Zhang, Hongbo Yuan. 2022. A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed Solanum Rostratum Dunal seedlings. Computers and Electronics in Agriculture 199: 107194. DOI: 10.1016/j.compag.2022.107194.
  38. Wongchai Anupong, Surendra Kumar Shukla, Mohammed Altaf Ahmed, Ulaganathan Sakthi, Mukta Jagdish, Ravi Kumar. 2022. Artificial intelligence-enabled soft sensor and internet of things for sustainable agriculture using ensemble deep learning architecture. Computers and Electrical Engineering 102: 108128. DOI: 10.1016/j.compeleceng.2022.108128.
  39. Zermas Dimitris, Da Teng, Panagiotis Stanitsas, Michael Bazakos, Daniel Kaiser, Vassilios Morellas, David Mulla,Nikolaos Papanikolopoulos. 2015. Automation solutions for the evaluation of plant health in corn fields. [In] IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): 15666982: 6521-6527. Hamburg, Germany, 28 September 2015-02 October 2015. DOI: 10.1109/IROS.2015.7354309.
  40. Zhang Jiali. 2020. Research on digital image processing and recognition technology of weeds in maize seedling stage based on Artificial Intelligence. Journal of Physics: Conference Series 1648. DOI: 10.1088/1742-6596/1648/4/042058.
  41. Zhang Peng, Zhiling Guo, Sami Ullah, Georgia Melagraki, Antreas Afantitis, Iseult Lynch. 2021. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nature Plants 7: 864-876. DOI: 10.1038/s41477-021-00946-6.
Cited by
Show
ISSN
1508-3535
Language
eng
URI / DOI
http://dx.doi.org/10.5604/01.3001.0053.9616
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu