- Author
- Naas Meryem-Nadjat (University of Relizane, Algeria), Zouaoui Habib (University of Relizane, Algeria)
- Title
- Forecasting Foreign Exchange Rate Volatility Using Deep Learning: Case of US Dollar/Algerian Dinar during the COVID-19 Pandemic
- Source
- Research Papers in Economics and Finance, 2024, vol. 8, nr 1, s. 91-114, wykr., tab., bibliogr. 35 poz.
- Keyword
- Zmienność kursu walutowego, Prognozowanie kursów walut, Dolar amerykański (USD), Pandemia, COVID-19
Exchange rate variability, Exchange rates forecasting, United States dollar (USD), Pandemic, COVID-19 - Note
- summ.
- Abstract
- This study explores the application of deep learning techniques in forecasting foreign exchange rate volatility, leveraging the capabilities of neural networks to capture complex patterns and nonlinear relationships within financial data. We applied the auto regressive integrated moving average (ARIMA) and machine learning linear regression (LR) model, deep learning models ( recurrent neural networks (RNN), bidirectional LSTM (Bi-LSTM), long short-term memory (LSTM) and gated recurrent unit (GRU). In terms of forecasting errors, and Python routines were used for such purpose. Morever, In order to investigate the quality of the models used, we compared the performances of these algorithms in US dollar/algerian dinar exchange rate forecasting througt the application of significance satistical tests (R-squared, MSE, RMSE, MAE, MAPE)The results clearly depict that contemporary techniques have been shown to produce more accurate results than conventional regression-based modeling. The machine learning linear regression (LR) model provides the maximum accuracy rate of (99.83%) followed by the RNN models with GRU model (92.27%) , Bi-LSTM model (87.34%), LSTM model (74.68%) and ARIMA model (32.29%).(original abstract)
- Full text
- Show
- Bibliography
- Abedin, M. Z., Moon, M. H., & Hassan, M.K. et al. (2021). Deep learning-based exchange rate prediction during the COVID-19 pandemic. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04420-6.
- Aloui, C., & Hkiri, B. (2014). Co-movements of GCC emerging stock markets: New evi-dence from wave let coherence analysis. Economic Modelling, 36, 421-431. https://doi.org/10.1016/j.econmod.2013.09.043.
- Aslam, F., Aziz, S., Nguyen, D. K., Mughal, K. S., & Khan, M. (2020). On the efficiency of for-eign exchange markets in times of the COVID-19 pandemic. Technological Forecasting and Social Change, 161, 120261. https://doi.org/10.1016/j.techfore.2020.120261.
- Aygün, B., & GünayKabakçı, E. (2021). Comparison of statistical and machine learning algo-rithms for forecasting daily bitcoin returns. European Journal of Science and Technology, 21, 444-454. https://doi.org/10.31590/ejosat.822153.
- Bai, S., Cui, W., & Zhang, L. (2018). The Granger causality analysis of stocks based on clus-tering. Cluster Computing, 22(12), 14311-14316. https://doi.org/10.1007/s10586-018-2290-0.
- Bank of Algeria (2022, December). Raport annuel 2021. Evolution, Economique et Monetaire. https://www.bank-of-algeria.dz/wp-content/uploads/2023/02/rapport-ba-2021fr-1.pdf.
- Cappiello, L., Engle, R. F., & Sheppard, K. (2006). Asymmetric dynamics in the correlations of global equity and bond returns. Journal of Financial Econometrics, 4(4), 537-572.
- Chai, J., & Li, A. (2019). Deep learning in natural language processing: A state-of-the-art survey. In: International Conference on Machine Learning and Cybernetics (ICMLC). (pp. 1-6). IEE. https://doi.org/10.1109/ICMLC48188.2019.8949185.
- Chen, W., Xu, H., Jia, L., & Gao, Y. (2020). Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants. International Journal of Forecasting, 37(1), 28-43. https://doi.org/10.1016/j.ijforecast.2020.02.008.
- Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for sta-tistical machine translation. arXiv:1406.1078. https://doi.org/10.48550/arXiv.1406.1078.
- Cui, Z., Ke, R., Pu, Z., & Wang, Y. (2020). Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing val-ues. Transportation Research Part C: Emerging Technologies, 118, 102674. https://doi.org/10.1016/j.trc.2020.102674.
- Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339-350.
- Fang, L., & Bessler, D. (2018). Is it China that leads the Asian stock market contagion in 2015? Applied Economics Letters, 25(11), 752-757. https://doi.org/10.1080/13504851.2017.1363854.
- Grinsted, A., Moore, J., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561-566. https://doi.org/10.5194/npg-11-561-2004.
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 8(9), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.
- Huyghebaert, N., & Wang, L. (2010). The co-movement of stock markets in East Asia: Did the 1997-1998 Asian financial crisis really strengthen stock market integration? China Economic Review, 21(1), 98-112.
- Kaushik, M. (2020). Forecasting foreign exchange rate: A multivariate comparative analy-sis between traditional econometric, contemporary machine learning & deep learning techniques. arXiv:2002.10247. https://doi.org/10.48550/arXiv.2002.10247.
- Ketkar, N., & Moolayil, J. (2021). Deep learning with Python: Learn best practices of deep learning models with PyTorch (2nd ed.). Apress.
- Korstanje, J. (2021). Advanced forecasting with Python: With state-of-the-art-models in-cluding LSTMs, Facebook's Prophet, and Amazon's DeepAR. MaisonsAlfort.
- Larasati, K. D., & Primandari, A. H. (2021). Forecasting Bitcoin price based on Blockchain information using long-short term method. Parameter: Journal of Statistics, 1(1), 1-6. https://doi.org/10.22487/27765660.2021.v1.i1.15389.
- Mahmoud, E., & Hosseini, H. (1994). A comparison of forecasting techniques for predict-ing exchange rates. Journal of Transnational Management Development, 1(1), 93-110. https://doi.org/10.1300/J130v01n01_07.
- Mathew, A., Amudha, P., & Sivakumari, S. (2021). Deep learning techniques: An overview. In: A. Hassanien, R. Bhatnagar, A. Darwish (Eds.), Advanced machine learning technolo-gies and applications. Proceedings of AMLTA 2020 (pp. 599-608). Springer. https://doi.org/10.1007/978-981-15-3383-9_54.
- Maya, C., & Gomez, K. (2008). What exactly is "bad news" in foreign exchange markets? Evidence from Latin American markets. Cuadernos de Economía, 45(132), 161-183.
- McNally, S., Roche, J., & Caton, S. (2018). Predicting the price of Bitcoin using machine learn-ing. In: 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP) (pp. 339-343). Cambridge, UK. https://doi.org/10.1109/PDP2018.2018.00060.
- Robinson, M., & Kabari, L. G. (2021). Predicting foreign exchange using digital signal pro-cessing. British Journal of Computer, Networking and Information Technology, 4(2), 1-11. https://doi.org/10.52589/BJCNIT-SQWFNRND.
- Schuster, M., & Paliwal, K. K., (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. https://doi.org/10.1109/78.650093.
- Siami-Namini, S., & Siami Namin, A. (2019). Forecasting Economics and Financial Time Series: ARIMA vs. LSTM. arXiv:1803.06386. https://doi.org/10.48550/arXiv.1803.06386.
- Udom, E. X. (2018). Estimating and forecasting Bitcoin daily returns using ARIMA-GARCH models. International Journal of Science and Research, 8(10), 376-382.
- Umar, Z., & Gubareva, M. (2020). A time - frequency analysis of the impact of the COVID-19 induced panic on the volatility of currency and cryptocurrency markets. Journal of Behavioral and Experimental Finance, 28, 100404. https://doi.org/10.1016/ j.jbef.2020.100404.
- Windsor, C., & Thyagaraja, A. (2001). The prediction of periods of high volatility in exchange markets. The European Physical Journal B-Condensed Matter and Complex Systems, 20(4), 581-584. https://doi.org/10.1007/PL00011111.
- Yasar, H., & Kilimci, Z. H. (2020). US dollar/Turkish lira exchange rate forecasting model based on deep learning methodologies and time series analysis. Symmetry, 12(9), 1553. https://doi.org/10.3390/sym12091553.
- Zahrah, H. H., Sa'adah, S., & Rismala, R. (2020). The foreign exchange rate prediction using long-short term memory: A case study in COVID-19 pandemic. Journal on Information and Communication Technology, 6(2), 94-105. https://doi.org/10.21108/IJOICT.2020.62.538.
- Zeroual, A., Harrou, F., Dairi, A., & Sun, Y. (2020). Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. Chaos, Solitons & Fractals, 140, 1-12. https://doi.org/10.1016/j.chaos.2020.110121.
- Zhang, X., Liang, X., Zhiyuli, A., Zhang, S., Xu, R., & Wu, B. (2019). AT-LSTM: An Attention-based LSTM Model for Financial Time Series Prediction. In: IOP Conf. Series: Materials Science and Engineering, 569, 052037, 1-7. https://doi.org/10.1088/1757-899X/569/5/052037.
- Zouaoui, H., & Naas, M .N. (2023). Option pricing using deep learning approach based on LSTM-GRU neural networks: Case of London stock exchange. Data Science in Finance and Economics, 3(3), 267-284. https://doi.org/10.3934/DSFE.2023016.
- Cited by
- ISSN
- 2543-6430
- Language
- eng
- URI / DOI
- http://dx.doi.org/10.18559/ref.2024.1.1172