BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Kuźmar Sławomir (Poznań University of Economics and Business, Poland), Piątek Dawid (Poznań University of Economics and Business, Poland)
Title
Digitalisation and Income Inequality in Central and Eastern European Countries
Source
Research Papers in Economics and Finance, 2024, vol. 8, nr 1, s. 158-176, wykr., tab., bibliogr. 40 poz.
Keyword
Cyfryzacja, Nierówności dochodowe, Analiza empiryczna
Digitization, Income inequalities, Empirical analysis
Note
summ.
Country
Europa Środkowo-Wschodnia
Central and Eastern Europe
Abstract
The COVID-19 pandemic has highlighted the importance of digital technologies in business and daily life. The paper aims to explore the theoretical and empirical aspects of the relation between digitalisation and income inequality in Central and Eastern European (CEE) countries between the years 2000-2020. It contributes to existing research on determinants of income inequality, focussing on the potential negative role of digitalisation as an unnoticeable driver of income inequality in CEE countries. To investigate the potential impact of digitalisation on income inequality, empirical analysis was performed for the sample of 10 CEE countries, namely Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, the Slovak Republic and Slovenia. The results of canonical correlation analysis indicated that the sets of variables related to digitalisation and inequality as a group are significantly related to each other and a strong correlation exists between them. The relative contribution of each indicator to each standardised function showed that the highest values of significant standardised coefficients were observed for income inequality indicators such as the top 10% share, the Gini coefficient, and the top 1% share, while in digitalisation measures, the highest value was observed for Internet users and fixed and mobile broadband subscriptions.(original abstract)
Full text
Show
Bibliography
Show
  1. Acemoglu, D. (2002). Technical change, inequality, and the labor market. Journal of Economic Literature, 40(1), 7-72. https://doi.org/10.1257/jel.40.1.7.
  2. Acemoglu, D., & Restrepo, P. (2022). Tasks, automation, and the rise in US wage inequal-ity. Econometrica, 90(5), 1973-2016.
  3. Alvaredo, F., & Gasparini, L. (2015). Recent trends in inequality and poverty in develop-ing countries. Handbook of Income Distribution, 2, 697-805. https://doi.org/10.1016/B978-0-444-59428-0.00010-2.
  4. Antonczyk, D., Fitzenberger, B., & Leuschner, U. (2009). Can a task-based approach explain the recent changes in the German wage structure? Jahrbucher fur Nationalokonomie und Statistik, 229(2-3), 214-238. https://doi.org/10.1515/jbnst-2009-2-309.
  5. Arendt, Ł. (2015). The digital economy, ICT and economic growth in the CEE countries. Olsztyn Economic Journal, 10(3), 247-262. https://doi.org/10.31648/oej.3150.
  6. Autor, D. H., Katz, L. F., & Krueger, A. B. (1998). Computing inequality: Have computers changed the labor market? Quarterly Journal of Economics, 113(4), 1169-1213.
  7. Berg, M. (1980). The Machinery Question and the Making of Political Economy 1815-1848.Cambridge University Press.
  8. Brzeziński, M., & Sałach, K. (2022). Determinants of inequality in transition countries. IZA World of Labor, 496, 1-11. https://doi.org/10.15185/izawol.496.
  9. Bukowski, P., & Novokmet, F. (2017). Inequality in Poland: Estimating the whole distribu-tion by g-percentile 1983-2015. WID.world Working Paper Series, 21.
  10. Butryn, B. (2020). Digitalization in the transformation of the business environment. Informatyka Ekonomiczna. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 4(58), 67-79. https://doi.org/10.15611/ie.2020.4.05.
  11. Card, D., & DiNardo, J. E. (2002). Skill-biased technological change and rising wage inequal-ity. Journal of Labor Economics, 20(4), 733-783.
  12. Dahlman, C., Mealy, S., & Wermelinger, M. (2016). Harnessing the digital economy for developing countries. OECD Development Centre Working Papers, 334. https://www.oecd-ilibrary.org/development/harnessing-the-digital-economy-for-developing-countries_4adffb24-en.
  13. Dattalo, P. (2014). A demonstration of canonical correlation analysis with orthogonal ro-tation to facilitate interpretation [unpublished manuscript]. School of Social Work, Virginia Commonwealth University, Richmond.
  14. Deaton, A. (2013). The great escape. Health, wealth, and the origins of inequality. Princeton University Press.
  15. Di, Y., Zhi, R., Song, H., & Zhang, L. (2022). Development and influencing factors of interna-tional trade in digitally deliverable services. Frontiers in Psychology, 13, 1-13. https://doi.org/10.3389/fpsyg.2022.908420.
  16. Fan, M., Yang, A. C., Fuh, J.-L., & Chou, C.-A. (2018). Topological pattern recognition of se-vere alzheimer's disease via regularized supervised learning of EEG complexity. Frontiers in Neuroscience, 12, article 685. https://doi.org/10.3389/fnins.2018.00685.
  17. Fiedler, P., Fidrmuc, J., & Reck, F. (2021). Automation, digitalization, and income inequality in Europe. Finance a úvěr / Czech Journal of Economics and Finance, 71(3), 203-219. https://doi.org/10.32065/CJEF.2021.03.01.
  18. Flemming, J. S., & Micklewright, J. (2000). Income distribution, economic systems and transition. Handbook of Income Distribution, 1, 843-918. https://doi.org/10.1016/S1574-0056(00)80017-2.
  19. Frey, C. B., & Osborne, M. A. (2017). The future of employment: how susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114, 254-280. https://doi.org/10.1016/j.techfore.2016.08.019.
  20. Gal, P., Nicoletti, G., Renault, T., Sorbe, S., & Timiliotis, C. (2019). Digitalisation and produc-tivity: In search of the holy grail - Firm-level empirical evidence from EU countries. OECD Economics Department Working Papers, 1533. https://doi.org/10.1787/5080f4b6-en.
  21. Götz, M., Bartosik-Purgat, M., & Jankowska, B. (2018). International aspects and challenges of digital transformation. Gospodarka Narodowa, 1(293), 87-102.
  22. Griliches, Z. (1969). Capital-skill complementarity. The Review of Economics and Statistics, 51(4), 465-468. http://www.jstor.org/stable/1926439.
  23. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis(7th ed.). Pearson Education.
  24. Katz, L. F., & Murphy, K. M. (1992). Changes in relative wages, 1963-1987: Supply and de-mand factors. The Quarterly Journal of Economics, 107(1), 35-78.
  25. Keister, R., & Lewandowski, P. (2017). A routine transition in the digital era? The rise of routine work in Central and Eastern Europe. Transfer: European Review of Labour and Research, 23(3), 263-279.
  26. Keynes, J. M. (1963). Essays in Persuasion. W.W. Norton & Company.
  27. Kraus, S., Jones, P., Kailer, N., Weinmann, A., Chaparro-Banegas, N., & Roig-Tierno, N. (2021). Digital transformation: An overview of the current state of the art of research. SAGE Open, 11(3), 1-15. https://doi.org/10.1177/21582440211047576.
  28. Kuznets, S. (1955). Economic growth and income inequality. The American Economic Review, 45(1), 1-28.
  29. Magda, I., Gromadzki, J., & Moriconi, S. (2021). Firms and wage inequality in Central and Eastern Europe. Journal of Comparative Economics, 49(2), 499-552. https://doi.org/10.1016/j.jce.2020.08.002.
  30. Milanovic, B. (2001). Inequality during the transition: Why did it increase? In: O. Havrylyshyn, S. M. Nsouli (Eds.), A Decade of Transition. Achievements and Challenges. International Monetary Fund. https://www.elibrary.imf.org/display/book/9781589060135/ch12.xml.
  31. Moll, B., Rachel, L., & Restrepo, P. (2022). Uneven growth: Automation's impact on income and wealth inequality. Econometrica, 90(6), 2645-2683.
  32. Mönnig, A., Maier, T., & Zika, G. (2019). Economy 4.0 - Digitalisation and its effect on wage inequality. Jahrbucher fur Nationalokonomie und Statistik, 239(3), 363-398. https://doi.org/10.1515/jbnst-2017-0151.
  33. Myovella, G., Karacuka, M., & Haucap, J. (2020). Digitalization and economic growth: A com-parative analysis of Sub-Saharan Africa and OECD economies. Telecommunications Policy, 44(2). https://doi.org/10.1016/j.telpol.2019.101856.
  34. Novokmet, F. (2017). Between communism and capitalism: essays on the evolution of in-come and wealth inequality in Eastern Europe 1890-2015 (Czech Republic, Poland, Bulgaria, Croatia, Slovenia, Russia) [unpublished PhD thesis]. Paris School of Economics.
  35. Piketty, T. (2014). Capital in the twenty-first century. The Belknap Press of Harvard University Press.
  36. Qureshi, Z. (2021). Technology, growth, and inequality. Changing Dynamics in the Digital Era, Global Working Paper #152. https://www.brookings.edu/wp-content/uploads/2021/02/Technology-growth-inequality_final.pdf.
  37. Roine, J., & Waldenström, D. (2015). Chapter 7. Long-run trends in the distribution of income and wealth. Handbook of Income Distribution, 2, 469-592. https://doi.org/10.1016/B978-0-444-59428-0.00008-4.
  38. Song, J., Price, D. J., Guvenen, F., Bloom, N., & Wachter, T. (2019). Firming up inequality. Quarterly Journal of Economics, 134(1), 1-50. https://doi.org/10.1093/QJE/QJY025.
  39. Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Qi Dong, J., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and re-search agenda. Journal of Business Research, 122, 889-901. https://doi.org/10.1016/ j.jbusres.2019.09.022.
  40. Vial, G., (2019). Understanding digital transformation: A review and a research agenda. The Journal of Strategic Information Systems, 28(2), 118-144. https://doi.org/10.1016/ j.jsis.2019.01.003.
Cited by
Show
ISSN
2543-6430
Language
eng
URI / DOI
http://dx.doi.org/10.18559/ref.2024.1.946
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu