BazEkon - The Main Library of the Cracow University of Economics

BazEkon home page

Main menu

Author
Jachimowicz-Rogowska Karolina (University of Life Sciences in Lublin), Winiarska-Mieczan Anna (University of Life Sciences in Lublin), Glibowski Paweł (University of Life Sciences in Lublin), Aleksandrowicz-Niedziela Ilona (University of Life Sciences in Lublin), Smagała Iwona (University of Life Sciences in Lublin), Bielak Agata (University of Life Sciences in Lublin)
Title
Verification of the Theoretical Energy Requirement of Underweight, Normal Weight and Overweight Young Women Using Ergospirometry
Weryfikacja teoretycznego zapotrzebowania energetycznego młodych kobiet z niedowagą, prawidłową masą ciała i nadmierną masą ciała za pomocą ergospirometrii
Source
Nauki Inżynierskie i Technologie / Uniwersytet Ekonomiczny we Wrocławiu, 2023, nr 39, s. 52-64, tab., bibliogr. 56 poz.
Engineering Sciences and Technologies / Uniwersytet Ekonomiczny we Wrocławiu
Keyword
Normy żywieniowe, Żywienie człowieka
Nutrition standards, Human nutrition
Note
Klayfikacja JEL: I10
streszcz., summ.
Abstract
Celem pracy była weryfikacja teoretycznego zapotrzebowania energetycznego młodych kobiet oraz obliczenie zależności między wskaźnikiem masy ciała (BMI) i zapotrzebowaniem energetycznym a parametrami uzyskanymi z analizy impedancji bioelektrycznej. Badanie przeprowadzono w grupie 32 kobiet wybranych na podstawie BMI: niedowaga n = 8, prawidłowa masa ciała n = 15, nadwaga n = 9. Zaobserwowano, że równania predykcyjne zaniżają zapotrzebowanie energetyczne w porównaniu z wartościami uzyskanymi za pomocą ergospirometrii. Najmniejszą różnicę w stosunku do Podstawowej Przemiany Materii (PPM) oszacowanej przy użyciu ergospirometru zaobserwowano w przypadku wzoru Cunninghama (niedowaga: 1507 vs 1350 kcal) i Harrisa-Benedicta (prawidłowa masa ciała: 1641 vs 1437 kcal; nadwaga: 1882 vs 1609 kcal). Zaobserwowano istotną korelację statystyczną między BMI i masą ciała w grupie z prawidłową masą ciała oraz w grupie z nadwagą. Oszacowanie PPM na podstawie wzorów ma ograniczoną wartość predykcyjną. Wskazane jest wykorzystywanie kalorymetrii pośredniej do pomiaru PPM zamiast używania wzorów predykcyjnych.(abstrakt oryginalny)

The research aim was to verify the theoretic energy requirement of young women and to calculate correlations between body mass index (BMI) and energy requirement, on the one hand, and the parameters obtained from bioelectrical impedance analysis on the other. The study was conducted in a group of 32 women grouped based on their BMI: underweight n = 8, normal weight n = 15, and overweight n = 9. Predictive formulas were observed to underestimate the energy requirement compared to values obtained with the use of ergospirometry. The smallest difference in Resting Energy Expenditure (REE) estimates using an ergospirometry apparatus was observed for the Cunningham equation (underweight: 1507 vs 1350 kcal) and the Harris-Benedict equation (normal weight: 1641 vs 1437 kcal; overweight: 1882 vs 1609 kcal). A significant statistical correlation was recorded in the juxtaposition of BMI to weight in the normal weight and in the overweight group. REE estimation based on formulas has only limited predictive value. Indirect calorimetry is recommended for measuring the REE rather than predictive equations.(original abstract)
Accessibility
The Main Library of the Wroclaw University of Economics
Full text
Show
Bibliography
Show
  1. Al-Domi, H., and Al-Shorman, A. (2018). Validation of Resting Metabolic Rate Equations in Obese and Non-obese Young Healthy Adults. Clinical Nutrition ESPEN, 26, 91-96. https://doi.org/10.1016/j.clnesp.2018.04.008
  2. Apovian, C. M. (2016). Obesity: Definition, Comorbidities, Causes, and Burden. American Journal of Managed Care, 22(7), 176-185.
  3. Brończyk-Puzoń, A., Koszowska, A., and Bieniek, J. (2018). Podstawowe pomiary antropometryczne i pochodne wskaźniki w poradnictwie dietetycznym - część pierwsza. Pielęgniarstwo i Zdrowie Publiczne, 8(3), 217-222.
  4. Byrska, K. (2013). Potential Fitmate Pro Cosmed Equipment Use in Determining the Workers Energy Expenditure. Logistyka, 4, 23-33.
  5. Calton, E. K., Pathak, K., Soares, M. J., Alfonso, H., Keane, K. N., Newsholme, P., Cummings, N. K., Chan She Ping-Delfos, W., and Hamidi, A. (2016). Vitamin D Status and Insulin Sensitivity Are Novel Predictors of Resting Metabolic Rate: A Cross-sectional Analysis in Australian Adults. European Journal of Nutrition, 55(6), 2075-2080.
  6. Całyniuk, Z., Sadek, A., Złoteńka-Synowiec, M., and Malczyk, A. (2018). Analysis of Young Men's Body Composition. In J. Nyćkowiak and J. Leśny (Eds.), Badania i rozwój młodych naukowców w Polsce. Nauki medyczne i nauki o zdrowiu. Część I (pp. 20-26). Młodzi Naukowcy.
  7. Ciborowska, H., and Rudnicka, A. (2014). Dietetics. Nutrition of a Healthy and Sick Person. PZWL.
  8. Correa-Rodríguez, M., Pocovi, G., Schmidt-RioValle, J., González-Jiménez, E., and Rueda-Medina, B. (2018). Assessment of Dietary Intake in Spanish University Students of Health Sciences. Endocrinología, Diabetes y Nutrición (English ed.), 65(5), 265-273. https://doi.org/10.1016/j.endinu.2018.01.005
  9. Cunningham, J. J. (1991). Body Composition as a determinant of Energy Expenditure: A Synthetic Review and a Proposed General Prediction Equation. The American Journal of Clinical Nutrition, 54, 963-969.
  10. de la Cruz, S., dee Mateo Silleras, B., Camina Martín, M. A., Carreño Enciso, L., Miján de la Torre, A., Galgani, J. E., and Redondo del Río, M. P. (2015). Agreement between Indirect Calorimetry and Predictive Equations in a Sample of Spanish Healthy Adults. Nutricion Hospitalaria, 32(2), 888-896. https://doi.org/10.3305/nh.2015.32.2.9162
  11. Fernández-Verdejo, R., and Galgani, J. E. (2022). Predictive Equations for Energy Expenditure in Adult Humans: From Resting to Free-living Conditions. Obesity (Silver Spring), 30(8), 1537-1548. https://doi.org/10.1002/oby.23469
  12. Flack, K. D., Siders, W. A., Johnson, L., and Roemmich, J. N. (2016). Cross-validation of Resting Metabolic Rate Prediction Equations. Journal of the Academy of Nutrition and Dietetics, 116, (9), 1413-1422. https://doi.org/10.1016/j.jand.2016.03.018.
  13. Gawędzki, J. (2022). Human Nutrition. Fundamentals of the Science of Nutrition. PWN.
  14. Hackney, A. C. (2016). Exercise, Sport, and Bioanalytical Chemistry: Principles and Practice. Elsevier, RTI International.
  15. Harris, J., and Benedict, F. (1918). A Biometric Study of Human Basal Metabolism. Proceedings of the National Academy of Sciences of the United States of America, 4(12), 370-373. https://doi.org/10.1073/pnas.4.12.370
  16. Hills, A. P., Mokhtar, N., and Byrne, N. M. (2014). Assessment of Physical Activity and Energy Expenditure: An Overview of Objective Measures. Frontiers in Nutrition, 1(5). https://doi.org/10.3389/fnut.2014.00005
  17. Jarosz, M., Rychlik, E., Stoś, K., and Charzewska, J. (2020). Human Nutrition Standards for the Polish Population. Narodowy Instytut Zdrowia Publicznego - Państwowy Zakład Higieny.
  18. Kucharska, A., Oleksiak, N., Sińska, B., Zegan, M., and Michota-Katulska, E. (2016). Fruits and Vegetables as a Source of Vitamins and Minerals in the Diet of Female Students of Dietetics. Bromatologia i Chemia Toksykologiczna, 49(2), 145-151.
  19. Lam, Y. Y., and Ravussin, E. (2017). Indirect Calorimetry: An Indispensable Tool to Understand and Predict Obesity. European Journal of Clinical Nutrition, 71(3), 318-322. https://doi.org/10.1038/ejcn.2016.220
  20. Logue, D. M., Madigan, S. M., Melin, A., Delahunt, E., Heinen, M., Donnell, S. M., and Corish, C. A. (2020). Low Energy Availability in Athletes 2020: An Updated Narrative Review of Prevalence, Risk, Within-day Energy Balance, Knowledge, and Impact on Sports Performance. Nutrients, 12(3), 835. https://doi.org/10.3390/nu12030835
  21. Ławiński, M., Singer, P., Gradowski, Ł., Gradowska, A., Bzikowska, A., and Majewska, K. (2015). Predicted versus Measured Resting Energy Expenditure in Patients Requiring Home Parenteral Nutrition. Nutrition, 31(11-12), 1328-1332. https://doi.org/10.1016/j.nut.2015.05.002
  22. Mackenzie, K. M., Kerr, D. A., Whitton, C., Talati, Z., McCaffrey, T. A., and Mullan, B. A. (2022). Predicting Perceived Problems in Self-administered 24-Hour Dietary Recalls: A Quantitative Think-aloud Study Comparing Automated Self-assisted 24-Hour Dietary Assessment Tool (ASA24®) and INTAKE24© in University Students. Nutrients, 14(20), 4281. https://doi.org/10.3390/nu14204281
  23. Malińska, M., and Młynarczyk, M. (2020). Dynamic Physical Effort - Selected Issues. Hygeia Public Health, 55(1), 7-13.
  24. Matinolli, H. M., Hovi, P., Männistö, S., Sipola-Leppänen, M., Eriksson, J. G., Mäkitie, O., Järvenpää, A. L., Andersson, S., and Kajantie, E. (2015). Early Protein Intake is Associated with Body Composition and Resting Energy Expenditure in Young Adults Born with Very Low Birth Weight. The Journal of Nutrition, 145(9), 2084-2091. https://doi.org/10.3945/jn.115.212415
  25. McArdle, W. D., Katch, F. I., and Katch, V. L. (2006). Essentials of Exercise Physiology. Lippincott Williams & Wilkins.
  26. Mifflin, M. D., St Jeor, S. T., Hill, L. A., Scott, B. J., Daugherty, S. A., and Koh, Y. O. (1990). A New Predictive Equation for Resting Energy Expenditure in Healthy Individuals. The American Journal of Clinical Nutrition, 51(2), 241-247. https://doi.org/10.1093/ajcn/51.2.241
  27. Mohan, A., Poulose, R., Kulshreshtha, I., Chautani, A. M., Madan, K., Hadda, V., and Guleria, R. (2017). High Prevalence of Malnutrition and Deranged Relationship Between Energy Demands and Food Intake in Advanced Non-small Cell Lung Cancer. European Journal of Cancer Care, 26(4), https://doi.org/10.1111/ecc.12503
  28. Molina-Luque, R., Carrasco-Marín, F., Márquez-Urrizola, C., Ulloa, N., Romero-Saldaña, M., and Molina-Recio, G. (2021). Accuracy of the Resting Energy Expenditure Estimation Equations for Healthy Women. Nutrients, 13(2), 345. https://doi.org/10.3390/nu13020345
  29. Most, J., Dervis, S., Haman, F., Adamo, K. B., and Redman, L. M. (2019). Energy Intake Requirements in Pregnancy. Nutrients, 11(8), 1812. https://doi.org/10.3390/nu11081812
  30. Müller, M. J., and Bosy-Westphal, A. (2013). Adaptive Thermogenesis with Weight Loss. Obesity, 21(2), 218-228. https://doi.org/10.1002/oby.20027
  31. Namazi, N., Aliasgharzadeh, S., Mahdavi, R., and Kolahdooz, F. (2016). Accuracy of the Common Predictive Equations for Estimating Resting Energy Expenditure among Normal and Overweight Female University Students. Journal of the American College of Nutrition, 35(2), 136-142. https://doi.org/10.1080/07315724.2014.938280
  32. Nikooyeh, B., and Tirang, R. N. (2019). Development of New Predictive Equations to Estimate Basal Metabolic Rates in Iranian Adults: A Study Protocol. Nutrition and Food Sciences Research, 6(2), 1-4. https://doi.org/10.29252/nfsr.6.2.1
  33. Oshima, T., Berger, M. M., De Waele, E., Guttormsen, A. B., Heidegger, C. P., Hiesmayr, M., Singer, P., Wernerman, J., and Pichard, C. (2017). Indirect Calorimetry in Nutritional Therapy. A Position Paper by the ICALIC Study Group. Clinical Nutrition (Edinburgh, Scotland), 36(3), 651-662. https://doi.org/10.1016/j.clnu.2016.06.010
  34. Pavlidou, E., Petridis, D., Tolia, M., Tsoukalas, N., Poultsidi, A., Fasoulas, A., Kyrgias, G., and Giaginiscor, C. (2018). Estimating The Agreement Between the Metabolic Rate Calculated from Prediction Equations and from a Portable Indirect Calorimetry Device: An Effort to Develop a New Equation for Predicting Resting Metabolic Rate. Nutrition & Metabolism, 15(41). https://doi.org/10.1186/s12986-018-0278-7
  35. Pereira, L. C. R., Purcell, S. A., Elliott, S. A., McCargar, L. J., Bell, R. C., Robson, P. J., Prado, C. M., and ENRICH Study Team. (2019). The Use of Whole Body Calorimetry to Compare Measured versus Predicted Energy Expenditure in Postpartum Women. The American Journal of Clinical Nutrition, 109(3), 554-565. https://doi.org/10.1093/ajcn/nqy312
  36. Pinto, A. S., Chedid, M. F., Guerra, L. T., Alvares-Da-Silva, M. R., Araújo, A. D., Guimaraes, L. S., Leipnitz, I., Chedid, A. D., Kruel, C. R., Grezzana-Filho, T. J., and Kruel, C. D. (2016). Estimating Basal Energy Expenditure in Liver Transplant Recipients: The Value of the Harris-Benedict Equation. Brazilian Archives of Digestive Surgery, 29(3), 185-188. https://doi.org/10.1590/0102-6720201600030013
  37. Polak, E., Zielińska, M., and Stępień, A. E. (2021). Wpływ składników odżywczych oraz grup produktów na wynik kalorymetrii pośredniej u osób z otyłością. In B. Bujalska and K. Kalbarczyk (Ed.), Wybrane aspekty stanu zdrowia osób mieszkających na terenie Polski - przegląd i badania. Tom 1 (pp. 228-238). Wydawnictwo Naukowe Tygiel.
  38. Poli, V. F., Sanches, R. B., Moraes, A. D., Fidalgo, J. P., Nascimento, M. A., Andrade-Silva, S. G., Clemente, J. C., Yi, L. C., and Caranti, D. A. (2016). Resting Energy Expenditure in Obese Women: Comparison Between Measured and Estimated Values. British Journal of Nutrition, 116(7), 1306-1313. https://doi.org/10.1017/S0007114516003172
  39. Przybyłowicz, K. E., Jesiołowska, D., Obara-Gołębiowska, M., and Antoniak, L. (2014). A Subjective Dissatisfaction with Body Weight in Young Women: Do Eating Behaviours Play a Role? Roczniki Państwowego Zakładu Higieny, 65(3), 243-249.
  40. Redondo, R. B. (2015). Resting Energy Expenditure; Assessment Methods and Applications. Nutricion Hospitalaria, 31(3), 245-254. https://doi.org/10.3305/nh.2015.31.sup3.8772
  41. Reneau, J., Obi, B., Moosreiner, A., and Kidambi, S. (2019). Do We Need Race-specific Resting Metabolic Rate Prediction Equations? Nutrition & Diabetes, 9(1), 21. https://doi.org/10.1038/s41387-019-0087-8
  42. Rodriguez, C., Harty, P. S., Stratton, M. T., Siedler, M. R., Smith, R. W., Johnson, B. A., Dellinger, J. R., Williams, A. D., White, S. J., Benavides, M. L., and Tinsley, G. M. (2022). Comparison of Indirect Calorimetry and Common Prediction Equations for Evaluating Changes in Resting Metabolic Rate Induced by Resistance Training and a Hypercaloric Diet. The Journal of Strength & Conditioning Research, 36(11), 3093-3104. https://doi.org/10.1519/JSC.0000000000004077
  43. Rynkiewicz-Andryśkiewicz, M., Andryśkiewicz, P., and Czernicki, J. (2013). Comparative Research on Methods of Estimating the Correct Body Weight and Body Fat Content. Lekarz Wojskowy, 91(4), 416-421.
  44. Rzesoś, A. (2013). Sposób żywienia i stan odżywienia chorych z otyłością (niepublikowana praca doktorska). Uniwersytet Medyczny im. K. Marcinkowskiego w Poznaniu.
  45. Saito, A., Imai, S., Htun, N. C., Okada, E., Yoshita, K., Yoshiike, N., and Takimoto, H. (2018). The Trends in Total Energy, Macronutrients and Sodium Intake Among Japanese: Findings from the 1995-2016 National Health and Nutrition Survey. British Journal of Nutrition, 120(4), 424-434. https://doi.org/10.1017/S0007114518001162
  46. Samolińska, W., and Kiczorowska, B. (2014). Assessment of Dietary Habits of Women Participating in Fitness Classes vs. Current Nutritional Recommendations. Problemy Higieny i Epidemiologii, 95(2), 339-345.
  47. Soares, M. J., and Muller, M. J. (2018). Resting Energy Expenditure and Body Composition: Critical Aspects for Clinical Nutrition. European Journal of Clinical Nutrition, 72(9), 1208-1214. https://doi.org/10.1038/s41430-018-0220-0
  48. Stańczyk, K., Kolmaga, A., and Burzyńska, M. (2021). Assessment of Nutritional Status and Dietary Habits of Adult Women with Insulin Resistance and Polycystic Ovary Syndrome - Pilot Studies. Żywność-Nauka Technologia Jakość, 28(4), 83-97. https://doi.org/10.15193/zntj/2021/129/402
  49. Stupnicki, R., and Tomaszewski, P. (2016). Body Mass Index and Adipose Tissue Content in Adults. Hygeia Public Health, 51(4), 335-338.
  50. Tinsley, G. M., Graybeal, A. J., and Moore, M. L. (2019). Resting Metabolic Rate in Muscular Physique Athletes: Validity of Existing Methods and Development of New Prediction Equations. Applied Physiology, Nutrition, and Metabolism, 44(4), 397-406. https://doi.org/10.1139/apnm-2018-0412
  51. Wajszczyk, B., Chwojnowska, B., Nasiadko, D., and Rybaczuk, M. (2015). Instrukcja programu Dieta 5.D do planowania i bieżącej oceny żywienia indywidualnego. Zakład Epidemiologii i Norm Żywienia, Instytut Żywności i Żywienia.
  52. Wirth, A., Wabitsch, M., and Hauner, H. (2014). The Prevention and Treatment of Obesity. Deutsches Arzteblatt International, 111(42), 705-713. https://doi.org/10.3238/arztebl.2014.0705
  53. Vybornaya, K. V., Sokolov, A. I., Kobelkova, I. V., Lavrinenko, S. V., Klochkova, S. V., and Nikityuk, D. B. (2017). Basal Metabolic Rate as an Integral Indicator of Metabolism Intensity. Voprosy Pitaniia, 86(5), 5-10. https://doi.org/10.24411/0042-8833-2017-00069
  54. Xue, J., Li, S., Zhang, Y., and Hong, P. (2019). Accuracy of Predictive Resting Metabolic Rate Equations in Chinese Mainland Adults. International Journal of Environmental Research and Public Health, 16(15), 2747. https://doi.org/10.3390/ijerph16152747
  55. Yao, E., Buchholz, A. C., Edwards, A. M., and Simpson, J. A. (2013). Predicted and Measured Resting Metabolic Rate in Young, Non-obese Women. Canadian Journal of Dietetic Practice and Research, 74(3), 124-130. https://doi.org/10.3148/74.3.2013.124
  56. Zhang, J., Tian, Z., and Tan, H. (2018). Research Progress in Measurement of Human Basal Metabolic Rate. Journal of Central South University. Medical Sciences, 43(7), 805-810. https://doi.org/10.11817/j.issn.1672-7347.2018.07.017
Cited by
Show
ISSN
2080-5985
Language
eng
URI / DOI
http://dx.doi.org/DOI: 10.15611/nit.2023.39.04
Share on Facebook Share on Twitter Share on Google+ Share on Pinterest Share on LinkedIn Wyślij znajomemu