BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Kapłon Robert
Tytuł
Analiza danych dyskretnych w ujęciu retrospektywnym - podstawy teoretyczne i zastosowanie w marketingu
A retrospective review of categorical data analysis - theory and marketing practice
Źródło
Badania Operacyjne i Decyzje, 2006, nr 1, s. 55-72, bibliogr. 128 poz.
Operations Research and Decisions
Słowa kluczowe
Analiza danych statystycznych, Wielowymiarowa analiza statystyczna
Statistical data analysis, Multi-dimensional statistical analysis
Uwagi
streszcz., summ.
Abstrakt
Przedstawiono historyczny rozwój metod analizy danych dyskretnych - budowa modelu (modele logit i probit), estymacja i weryfikacja. W obrębie tych zagadnień zaakcentowano wady podejść i historyczne próby ich przezwyciężenia. Następnie podjęto zagadnienie niejednorodności obserwacji, wskazując sposoby radzenia sobie z nią. Omówienie możliwości praktycznego wykorzystania prezentowanych metod ograniczono do zagadnień marketingowych.

The paper presents historical development of the categorical data analysis for models with explicit response variables defined as well as models without such a distinction. Besides difficulties in model building we focus on methods and procedures for model testing and for the estimation of model parameters. Within these issues we emphasize the drawbacks of the models and historical trials to overcome them. The problem of data heterogeneity and methods that help to handle it were considered. Discussion of practical usefulness of categorical data analysis is limited to marketing problems.
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. AGRESTI A., BOOTH J.G., HOBERT J.P., CAFFO B., Random-effects modeling of categorical response data sociological methodology. Sociological Methodology, 2000. Vol. 30, Issue 1, s. 27-80.
  2. AGRESTI A., Challenges for categorical data analysis in the twenty-first century, [w:J C.R. Rao, G.J. Szekely Statistics for the 21st Century: methodologies for applications of the future. Marcel Dekker 2000.
  3. AGRESTI A., COULL B.A., Approximate is better than 'exact' for interval estimation of binomial proportions, American Statistician, 1998, Vol. 52, Issue 2, s. 119-126.
  4. AGRESTI A., An introduction to categorical data analysis. New York, John Wiley & Son 1996.
  5. AGRESTI A., Categorical data analysis, (2-nd edition) Wiley-Intersciencc Publication 2002.
  6. AGRESTI A., Categorical data analysis, NY, Wiley, 1990.
  7. AMEMIYA T., Qualitative response models: A survey. Journal of Economic Literature, 1981(13), s. 105-111.
  8. ANDERSON T.W., An introduction to multivariate statistical analysis, Wiley-Interscience (3rd edition) 2003.
  9. ANDERSON C.J., The analysis of three-way contingency tables by three-mode association model, Psychometrika, 1996(61), s. 465-483.
  10. ARON A., ARON E.N., Statistics for psychology. Prentice Hall, 2002.
  11. BAGLIVO J., PAGANO M., Permutation distributions via generating functions with applications to sensitivity analysis of discrete data, Journal of the American Statistical Association, 1996, Vol. 91, Issue 435, s. 1037-1036.
  12. BIRCH M.W., Maximum likelihood in three way contingency tables. Journal of the Royal Statistical Society, 1963, ser. B (25), s. 220-223.
  13. BISHOP Y.M., FIENBERG STR.E., P HOLLAND P.W., Discrete multivariate analysis theory and practice: theory and practice, MIT Press, Cambridge, Massachusetts 1975.
  14. BLATTBERG R.C., DOLAN R.J., An assessment of the contribution of log linear models to marketing research. Journal of Marketing, 1981, Vol. 45, Issue 2, s. 89-97.
  15. BLISS, C. I., The method of probits, Science, 1934(79), s. 38-39; s. 409-410.
  16. BLOCH D.A, WATSON, G.S., A bayesian study of the multinomial distribution. The Annals of Mathematical Statistics, 1967(38), s. 1423-1435.
  17. BOYD, J., MELLMAN J., The effect of fuel economy standards on the U.S. automotive market: A hedonic demand analysis. Transportation Research A, 1980(14), s. 367-378.
  18. BRZEZIŃSKI J., Metodologia badań psychologicznych. Wydawnictwo Naukowe PWN, Warszawa, 2003.
  19. CHANG, W.C., On using principal components before separating a mixture of Two multivariate normal distributions, Journal of the Royal Statistical Society - Applied Statistics (Series C), 1983(32), s. 267-275.
  20. CHEN MING-HUI, DEY D.K., Variable selection for multivariate logistic regression models. Journal of Statistical Planning & Inference, 2003, Vol. Ill, Issue 1/2, s. 37-55.
  21. CHOULAKIAN V., Exploratory analysis of contingency tables by log-linear formulation and generalizations of correspondence analysis, Psychometrika, 1988(53), s. 235-250.
  22. CHURCHILL G.A., IACOBUCCI D., Marketing research: methodological foundations, South-Western College Publication, 2004.
  23. CLOGG C.C., Latent class models, [w:] Arminger G., Clogg C.C., & Sobel M.E., Handbook of statistical modelling for social and behavioural science, 1995, s. 311-359. New York, Plenum.
  24. COX D.R., The regression analysis of binary sequences. Journal of the Royal Statistical Society. Series B (Methodological), 1958,20. s. 215-242.
  25. COX D.R., Analysis of binary data, London: Chapman and Hall, 1970.
  26. CRAMER J.S., Logit models from economics and other fields, Cambridge University Press, 2nd Ed 2003.
  27. DANAHER P., A log-linear model for predicting magazine audiences. Journal of Marketing Research. 1988, Vol. 25, Issue 4, s. 356-362.
  28. DANAHER P., An approximate log-linear model for predicting magazine audiences, Journal of Marketing Research, 1989, Vol. 26, Issue 4, s. 473-479.
  29. DAYTON C.M., Latent class scaling analysis. Sage University Papers Series on Quantitative Applications in the Social Sciences, 07-126, Thousand Oaks, CA, Sage 1998.
  30. DE SOETE G., HEISER W.J., A latent class unfolding model for analyzing single stimulus preference ratings, Psychometrika, 1992, Vol. 58, No. 4, s. 545-565.
  31. DESARBO W.S., KIM Y., FONG D., A Bayesian multidimensional scaling procedure for the spatial analysis of revealed choice data. Journal of Econometrics, 1999, 89(1-2), s. 79-108.
  32. DESARBO W.S., MANRAI A., MANRAI L, Latent class multidimensional scaling: A review of recent developments in the marketing and psychometric literature, [w:] R.P. Bagozzi, Advanced Methods of Marketing Research, str. 190-222, Oxford, Blackwell 1994.
  33. DESARBO W.S., HILDEBRAND D.K., A marketer's guide to log-linear models for qualitative data analysis, Journal of Marketing, 1980, Vol. 44, Issue 3, s. 40-51.
  34. DESARBO W.S., JEDIDI K., COOL K., SCHENDEL D., Simultaneous multidimensional unfolding and cluster analysis: An investigation of strategic groups. Marketing Letters, 1990(3), s. 129-146.
  35. DESARBO W.S., KIM Y., WEDEL M., FONG D.K.H., A Bayesian approach to the spatial representation of market structure from consumer choice data, European Journal of Operational Research, 1998(111), s. 285-305.
  36. DILLON W., KUMAR A., Intent structure and other mixture models in marketing: an integrative survey and overview, [w:] R.P. Bagozzi, Advanced methods of marketing research, s. 295-351. Oxford, Blackwell, 1994.
  37. DILLON WILLIAM R., MULANI N., FREDERICK D.G., On the use of component scores in the presence of group structure. Journal of Consumer Research, 1989(16), s. 106-112.
  38. FIENBERG S.E., Contingency tables and log-linear models: basic results and new developments, Journal of the American Statistical Association, 2000, Vol. 95, Issue 450, s. 643-647.
  39. FRANSES P.H., PAAP R., Quantitative models in marketing research, Cambridge University Press, Cambridge, 2001.
  40. FIENBERG S.E., The analysis of cross-classified categorical data, MIT Press, Cambridge, Massachusetts. 1980.
  41. GADDUM, J. H., Reports on biological standard III. Methods of biological assay depending on a quanial response, London 1933, Medical Research Council. Special Report Series of the Medical Research Council, No. 183.
  42. GATNAR E. (red.), Analiza i prognozowanie zjawisk rynkowych o charakterze niemetrycznym. Wydawnictwo Akademii Ekonomicznej w Katowicach, Katowice, 2003.
  43. GATNAR E., Symboliczne metody klasyfikacji danych. Wydawnictwo Naukowe PWN, Warszawa, 1998.
  44. GATNAR E., WALESIAK M. (red), Metody statystycznej analizy wielowymiarowej w badaniach marketingowych. Wydawnictwo Akademii Ekonomicznej we Wrocławiu, Wrocław 2004.
  45. GAUDRY M., DAGENAIS M., The dogit model. Transportation Research B, 1978(13), s. 105-111.
  46. GELMAN A., GOEGEBEUR Y., TUERLINCKX F., VAN MECHELEN I., Diagnostic checks for discrete data regression models using posterior predictive simulations. Journal of the Royal Statistical Society, Series C (Applied Statistics), 2000, Vol. 49, Issue 2, s. 247-268.
  47. GIRI N.C., Multivariate statistical analysis. Marcel Dekker, New York, 2003.
  48. GOOD PH., Permutation Test. A practical guide to resampling methods for testing hypotheses, Springer-Verlag, New York, 1994.
  49. GOODMAN L.A., KRUSKAL W.H., Measures for association for cross-classification, IV: Simplification of Asymptotic Variances, Journal of the American Statistical Association, 1972, Vol. 67, s. 415-421.
  50. GOODMAN L.A., KRUSKAL W.H., Measures for association for cross-classification, II: Further Discussion and References, Journal of the American Statistical Association, 1959, Vol. 54, s. 123-163.
  51. GOODMAN L.A., KRUSKAL W.H., Measures for association for cross-classification, I. Journal of the American Statistical Association, 1954, Vol. 49. s. 732-764.
  52. GOODMAN L.A., KRUSKAL W.H., Measures for association for cross-classification, III: Approximate Sampling Theory, Journal of the American Statistical Association, 1963, Vol. 58, s. 310-364.
  53. GOODMAN L.A., Measures, models, and graphical displays in the analysis of cross-classified data (with discussion). Journal of the American Statistical Association, 1991(86), s. 1085-1111.
  54. GOODMAN L.A., Simple models for the analysis of association in cross-classifications having ordered categories. Journal of the American Statistical Association, 1979, Vol. 74, Issue 367, s. 537-553.
  55. GRAVETTER F.J., WALLNAU L.B., Statistics for the behavioral sciences, Wadsworth Publishing, 2003.
  56. GREEN P.E., KRIEGER A., Alternative approaches to cluster-based market segmentation. Journal of the Market Research Society, 1995, 37(3), s. 231-239.
  57. GREEN P.E., CARMONE F.J., WACHSPRESS D.P., On the analysis of qualitative data in marketing research, Journal of Marketing Research, 1977, Vol. 14, Issue 1, s. 52-59.
  58. GROVER R., SRINIVASAN V., A simultaneous approach to market segmentation and market structuring. Journal of Marketing Research, 1987(May), s. 139-153.
  59. GRUSZCZYŃSKI M., Modele i prognozy zmiennych jakościowych w finansach i bankowości, Oficyna Wydawnicza Szkoły Głównej Handlowej, Warszawa, 2002.
  60. GUADAGNI P.M., LITTLE D.C., A logit model of brand choice calibrated on scanner data, Marketing Science, 1983, 2(3), s. 203-238.
  61. GURLAND J., LEE I., DAHM P.A., Polychotomous quantal response in biological assay. Biometrics, 1960(16), s. 382-398.
  62. HABERMAN S.J., The analysis of residuals in cross-classified tables. Biometrics, 1973(29), s. 205-220.
  63. HABERMAN S.J., Generalized residuals for log-linear models, In Proceedings of the Ninth International Biometrics Conference 1, 1976, s. 104-172.
  64. HABERMAN S.J., Log-linear models for frequency data: Sufficient statistics and likelihood equations, The Annals of Statistics, 1973(1), s. 617-632.
  65. HABERMAN S.J., Log-linear models for frequency tables with ordered classifications. Biometrics, 1974(30), s. 589-600.
  66. HAIR J.F., TATHAM R.L., ANDERSON R.E., BLACK W., Multivariate data analysis, Prentice Hall (5th Edition), 1998.
  67. HAUSMAN J., WISE D., A conditional probit model for qualitative choice: Discrete decisions recognizing interdependence and heterogeneous preferences, Econometrica, 1978, 48(2), s. 403-426.
  68. HEALEY J.F., Statistics: a tool for social research, Wadsworth Publishing, 2004.
  69. HEINEN T., Latent class and discrete latent trail models: Similarities and differencestr. Thousand Oaks, California, Sage, 1996.
  70. HIRJI K.F., Computing exact distributions for polytomous response data. Journal of the American Statistical Association, 1992, Vol. 87, Issue 418, s. 487-492.
  71. HIRJI K.F., MEHTA C.R., PATEL N.R., Computing distributions for exact logistic regression. Journal of the American Statistical Association, 1987, Vol. 82, Issue 400, s. 1110-1117.
  72. IACOBUCCI D., HENDERSON G., Log linear models for consumer brand switching behavior: What a manager can learn from. Advances in Consumer Research, 1997, Vol. 24, Issue 1, s. 375-380.
  73. JAJUGA K., Statystyczna analiza wielowymiarowa. Wydawnictwo Naukowe PWN, Warszawa, 1993.
  74. KACZMARCZYK S., Badania marketingowe - Metody i techniki. Państwowe Wydawnictwo Ekonomiczne, Warszawa, 2003.
  75. KACZMARCZYK S., Badania marketingowe: metody i techniki, Polskie Wydawnictwo Ekonomiczne, Warszawa, 1999.
  76. KAMAKURA W.A., RUSSELL G.J., A probabilistic choice model for market segmentation and elasticity structure. Journal of Marketing Research, 1989, 26(November), s. 379-390.
  77. KANNAN P., WRIGHT G., Modeling and testing structured markets: a nested logit approach. Marketing Science, 1991, 10(Winter), s. 58-82.
  78. KAPŁON R., Pozycjonowanie produktów - próba metodologicznej interpretacji, rozprawa doktorska, Wrocław, 2003.
  79. KAPŁON R., Analiza danych dyskretnych za pomocą metody LCA, [w:] Jajuga K., Walesiak M., Klasyfikacja i analiza danych - teoria i zastosowania. Taksonomia nr 9, Prace Naukowe Akademii Ekonomicznej we Wrocławiu, 2002.
  80. KAPŁON R., Estymacja parametrów modelu czynnikowego wykorzystującego klasy ukryte, [w:] Jajuga K., Walesiak M., Klasyfikacja i analiza danych - teoria i zastosowania, Taksonomia nr 11, Prace Naukowe Akademii Ekonomicznej we Wrocławiu, 2004.
  81. KAPŁON R., Mapy pozycjonowania wyrobów przy wykorzystaniu analizy czynnikowej klas ukrytych, [w:] Jajuga K., Walesiak M., Klasyfikacja i analiza danych - teoria i zastosowania, Taksonomia nr 10, Prace Naukowe Akademii Ekonomicznej we Wrocławiu, 2003.
  82. KAPŁON R., Model logitowy z klasami ukrytymi, Ekonometria XV (w druku) 2004.
  83. KING E.N., RYAN TH.P., A preliminary investigation of maximum likelihood logistic regression versus exact logistic regression, American Statistician, 2002, Vol. 56, Issue 3, s. 163-170.
  84. KRZYŚKO M., Wielowymiarowa analiza statystyczna, UAM, Poznań, 2000.
  85. LERMAN S., MANSKI C, On the use of simulated frequencies to approximate choice probability, [w:] C. Manski D. McFadden (red.), Structural analysis of discrete data with econometric applications, s. 305-319, MIT Press Cambridge 1981.
  86. LUCE D., Individual choice behavior, John Wiley and Sons, New York, 1959.
  87. MAGIDSON Y., Some common pitfalls in causal analysis of categorical data. Journal of Marketing Research, 1982, Vol. 19, Issue 4, s. 461-471.
  88. MALHOTRA N.K., The use of linear logit models in marketing research. Journal of Marketing Research, 1984, Vol. 21, Issue 1, s. 20-31.
  89. MANTEL, N., Models for complex contingency tables and polychotomous dosage response curve, Biometrics, 1966(22), s. 83-95.
  90. MAZURKIEWICZ M., MERCIK J. W., DOBROWOLSKI W., Verifcation of ideological classifications -a statistical approach. Control and Cybernetics, 2001, Vol. 30, Issue 4, s. 451-465.
  91. McCULLAGH P., The conditional distribution of goodness-of-fit statistics for discrete data. Journal of the American Statistical Association, 1986, Vol. 81, Issue 393, s. 104-107.
  92. McCULLOCH R., Rossi P.E., An exact likelihood analysis of the multinomial probit model, Journal of Econometrics, 1994(64), s. 207-240.
  93. McCUTCHEON A.L., Latent Class Analysis, Sage University Papers Series on Quantitative Applications in the Social Sciences, 07-064, Thousand Oaks, CA, Sage 1987.
  94. McDONALD J.W., SMITH P.W.F., FORSTER J.J., Exact tests of goodness of fit of log-linear models for rates. Biometrics, 1999, Vol. 55, Issue 2, s. 620-624.
  95. McFADDEN D., Conditional logit analysis of qualitative choice behavior, [w:] P. Zarembka (red.), frontiers in Econometrics, s. 105-142, Academic Press. New York, 1974.
  96. McFADDEN D., Econometric models of probabilistic choice, [w:] C. Manski D. McFadden, Structural analysis of discrete data with econometric applications, s. 198-272, MIT Press Cambridge, 1981.
  97. McFADDEN D., Economic choices, American Economic Review, 2001(91), s. 351-378.
  98. McFADDEN D., Modeling the Choice of Residential Location, [w:] A. Karlqvist, L. Lundqvist, F. Snickars, J. Weibull (red.), Spatial Interaction Theory And Planning Models, s. 75-96, North Holland, Amsterdam, 1978.
  99. McFADDEN D., Quantal choice analysis: A survey. Annals of Economic and Social Measurement, 1976, 5(4), s. 363-390.
  100. McFADDEN D., The choice theory approach to market research. Marketing Science, 1986, 5(4), s. 275-297.
  101. McFADDEN D., TRAIN K., Mixed MNL models for discrete response, Journal of Applied Econometrics, 2000, Vol. 15, Issue 5. s. 447-470.
  102. McLACHLAN, G., BASFORD, K., Mixture models: inference and applications to clustering. New York, Marcel Dekker, 1988.
  103. MEHTA C.R., PATEL N.R., SENCHAUDHURI P., Efficient monte carlo methods for conditional logistic-regression, Journal of the American Statistical Association, 2000, Vol. 95, Issue 449. s. 99-108.
  104. MERITER C., Advanced and multivariate statistical methods, Pyrczak Publication, 2001.
  105. MEYER R.J., KAHN B.E., Probabilistic models of consumer choice behavior, [w:] T.STR. Robertson, H.H. Kassarjian (red.). Handbook of consumer behaviour, s. 85-123, Englewood Cliffs, NJ, Prentice-Hall, 1991.
  106. MOOIJAART A., Three-factor interaction models by log-trilinear terms in three-way contingency tables, Statistica Applicata, 1992(4), s. 669-677.
  107. MORRISON D.F., Multivariate statistical methods, McGraw-Hill Companies (3rd edition), 1990.
  108. NELDER J.A., WEDDERBURN R.W.M., Generalized linear models, Journal of the Royal Statistical Society, 1972, ser. A (135), s. 370-384.
  109. OSTASIEWICZ W. (red.), Statystyczne metody analizy danych, AE we Wrocławiu, Wrocław, 1999.
  110. PAGANO M., GAUVREAU K., Principles of biostatistics, Duxbury Press, 2000.
  111. PAPATLA P., KRISHNAMURTHY L., A Probit model of choice dynamics, Marketing Science, 1992, 12(Spring), s. 189-206.
  112. PAYNE J.W., BETTMAN J.R., JOHNSON E.J., Behavioral decision research: A constructive processing perspective, Annual Review of Psychology, 1992, 43(1), s. 87-131.
  113. ROST J., LANGEHEINE R., A guide through latent structure models for categorical data, [w:] Rost J., Langcheine R. (eds.), Applications of latent trait and latent class models in the social science, Berlin, Waxmann, 1997.
  114. RUSSELL G.J., PETERSEN A., Analysis of cross category dependence in market basket selection, Journal of Retailing, 2000, 76(3), s. 367-392.
  115. SICILIANO R., MOOIJAART A., Three-factor association models for three-way contingency tables, Computational Statistics & Data Analysis, 1997, Vol. 24, Issue 3, s. 337-356.
  116. SLOVIC P., Construction of preference, American Psychologist, 1995, 50(5), s. 364-371.
  117. TANG MAN-LAI, Exact goodness-of-fit test for binary logistic model, Statistica Sinica, 2001(11), s. 199-211.
  118. THEIL H., A multinomial extension of the linear logit model. International Economic Review, 1969(10), s. 251-259.
  119. THURSTONE L., A law of comparative judgment. Psychological Review, 1927(34), s. 273-286.
  120. THURSTONE L., Psychological analysis, American Journal of Psychology, 1927(38), s. 368-389.
  121. TITTERINGTON D.M., SMITH A.F.M., MARKOV U.E., Statistical analysis of finite mixture distributions, John Wiley & Son, 1985.
  122. TRAIN K.E., Discrete choice methods with simulation, Cambridge University Press, Cambridge 2003.
  123. TRAIN K.E., Qualitative choice analysis, MIT Press, Cambridge, 1986.
  124. WALESIAK M., Metody analizy danych marketingowych. Wydawnictwo Naukowe PWN, Warszawa 1996.
  125. WATAŁA C., Biostatystyka - wykorzystanie metod statystycznych w pracy badawczej w naukach biomedycznych. Alfa Medica Press, Bielsko-Biała 2002.
  126. WEDEL M., KAMAKURA W., Market segmentation: conceptual and methodological foundations, Dordrecht, Kluwer Academic Publisher, 1999.
  127. WEDEL M., DESARBO W.S., BULT J.R., RAMASWAMY V., A latent class poisson regression model for heterogeneous count data, Journal of Applied Econometrics, 1993, 8(4), s. 397-411.
  128. WEN C., KOPPELMAN F., The generalized nested logit model. Transportation Research B, 2001. 35(7), s. 627-641.
Cytowane przez
Pokaż
ISSN
1230-1868
Język
pol
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu