BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Grzegorzewski Przemysław
Tytuł
Approximation of a Fuzzy Number Preserving Entropy-Like Nonspecifity
Aproksymacja liczb rozmytych zachowująca entropijną miarę niespecyficzności
Źródło
Badania Operacyjne i Decyzje, 2003, nr 4, s. 49-59, bibliogr. 15 poz.
Operations Research and Decisions
Słowa kluczowe
Zbiory rozmyte, Analiza danych statystycznych, Przetwarzanie danych, Badania operacyjne, Badania systemowe
Fuzzy sets, Statistical data analysis, Data processing, Operations research, System research
Uwagi
streszcz., summ.
Abstrakt
Zbiory rozmyte okazały się bardzo pomocne w modelowaniu i efektywnym przetwarzaniu nieprecyzyjnych informacji. Czasem zachodzi jednak konieczność przybliżenia danego zbioru rozmytego za pomocą zbioru nierozmytego. W tym celu stosuje się zazwyczaj defuzyfikację (wyostrzanie), ale metoda ta niestety często prowadzi do utraty zbyt wielu cennych informacji. W tym przypadku wskazane być może posłużenie się aproksymacją przedziałową. W niniejszej pracy ograniczymy się do najważniejszej podrodziny zbiorów rozmytych, tzn. do liczb rozmytych. Dla wspomnianej rodziny przedstawiono nową metodę aproksymacji przedziałowej, zachowującą ilość informacji, jaką dostarcza przybliżana liczba rozmyta. Dokładniej, wprowadzona zostanie pewna miara informacji, zwana entropijną miarą niespecyficzności, a następnie wskazana zostanie metoda aproksymacji przedziałowej liczb rozmytych, zachowująca tę miarę informacji.

The problem of the interval approximation of fuzzy numbers is discussed. A measure of uncertainty, called entropy-like nonspecifity is proposed and interval approximation operator preserving this non-specifity measure is suggested.
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Bibliografia
Pokaż
  1. CHANAS S., On the interval approximation of a fuzzy number, Fuzzy Sets and Systems, 2001, 122, 353-356.
  2. DE LUCA A., TERMINI S., A definition of a nonprobabilistic entropy in the setting of fuzzy set theory, Information and Control, 1972, 20, 301-312.
  3. DUBOIS D., PRADE H., The mean value of a fuzzy number, Fuzzy Sets and Systems, 1987, 24, 279-300.
  4. GRZEGORZEWSKI P., Metrics and orders in space of fuzzy numbers. Fuzzy Sets and Systems, 1998, 97, 83-94.
  5. GRZEGORZEWSKI P., Interval aggregation in data mining, [in:] Flexible Query Answering Systems, Larsen H.L., Kacprzyk J., Zadrożny S., Adreasen T., Christianses H. (eds.), Springer, 2000, 465-474.
  6. GRZEGORZEWSKI P., Nearest interval approximation of a fuzzy number, Fuzzy Sets and Systems, 2002, 130, 321-330.
  7. HEILPERN S., The expected value of a fuzzy number, Fuzzy Sets and Systems, 1992, 47, 81-86.
  8. HlGASHl M., KLIR G.J., Measures of uncertainty and information based on possibility fist ributions, Intern. J. of General Systems, 1983, 9, 43-58.
  9. KANDEL A., Fuzzy Techniques in Pattern Recognition, Wiley, New York, 1982.
  10. KAUFMANN A., Introduction to the Theory of Fuzzy Subsets, Academic Press, 1998.
  11. KUR G.J., WIERMAN M.J., Uncertainty-Based Information, Physica-Verlag, 1998.
  12. PAL S.K., DUTTA MAJUMDER D.K., Fuzzy Mathematical Approach to Pattern Recognition, Wiley Eastern Ltd, 1987.
  13. SHANNON C.E., The mathematical theory of communication, The Bell System Technical J., 1948, 27, 379-423, 623-656.
  14. YAGER R.R., Entropy and specificity in a mathematical theory of evidence, Intern. J. of General Systems, 1983, 9, 249-260.
  15. ZADEH L.A., Probability measures of fuzzy events, J. Math. Anal. Appl., 1968, 23, 421-427.
Cytowane przez
Pokaż
ISSN
1230-1868
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu