BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Sewastianow Paweł, Jończyk Monika
Tytuł
Bicriterial Fuzzy Portfolio Selection
Dwukryterialna, rozmyta optymalizacja portfela papierów wartościowych
Źródło
Badania Operacyjne i Decyzje, 2003, nr 4, s. 149-165, bibliogr. 24 poz.
Operations Research and Decisions
Słowa kluczowe
Programowanie matematyczne, Programowanie liniowe, Metody portfelowe
Mathematical programming, Linear programming, Portfolio methods
Uwagi
streszcz., summ.
Abstrakt
W artykule przeanalizowano rozwiązanie problemu optymalnej selekcji portfela papierów wartościowych, przedstawiając go jako zagadnienie nieliniowego, rozmytego, dwukryterialnego programowania. W tym celu opracowano specjalny algorytm numeryczny. Pokazano, że tak sformułowany problem dostarcza rozwiązań, które uogólniają, jako wyniki szczegółowe, wszystkie wyniki uzyskane przy użyciu podejść jednokryterialnych. Zastosowano sposoby podejścia proponowane przez Stefana Chanasa do rozwiązywania zagadnień programowania liniowego z przedziałowymi i rozmytymi parametrami. Również inspiracja tematem wiąże się ze znaczącymi osiągnięciami prof. Chanasa w tym obszarze badawczym.

A solution of the portfolio selection problem, presented as a nonlinear fuzzy bicriterial task, has been analyzed. For the purpose of solving this problem, a special numerical algorithm has been elaborated. It is shown that using bicriterial portfolio problem formulation all the results obtained with application of usual (with a single criterion) methods can be gained as special cases. The authors use the approaches proposed by Stefan Chanas to solve the problems of linear programming with interval and fuzzy coefficients, being inspired by his significant contribution to this domain.
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Bibliografia
Pokaż
  1. ARENAS M., BILBAO A., RODRIGUEZ M.V., A fuzzy goal programming approach to portfolio selection, European Journal of Operational Research, 2001, 133, 287-297.
  2. DYMOWA L., DOLATA M., The transportation problem under probabilistic and fuzzy uncertainties. In this issue.
  3. CHANAS S., DELGADO M., VERDEGAY J.L., VILA M.A., Ranking fuzzy interval numbers in the setting of random sets, Information Sciences, 1993, 69, 201-217.
  4. CHANAS S., KUCHTA D., Multiobjective programming in optimization of interval objective functions - A generalized approach, European Journal of Operational Research, 1996, 94, (3), 594-598.
  5. CHANAS S., ZIELINSKI P. Ranking fuzzy interval numbers in the setting of random sets - further results, Information Sciences, 1999, 117, 3-4, 191-200.
  6. INUIGUCHI M., RAMIK J., Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem, Fuzzy Sets and Systems, 2000, 111, 3-28.
  7. JAULIN L., KIEFFIR M., DIDRIT O., WALTER E. Applied Interval Analysis, Springcr-Verlag, London 2001.
  8. KAUFMANN A., GUPTA M., Introduction to fuzzy arithmetic-theory and applications, New York: Van Nostrand Reinhold, 1985, p. 349.
  9. KONNO H., YAMAZAKI H., Mean-absolute deviation portfolio optimization model and its application to Tokio stock market, Management Science, 1991, 37 (5), 519-531.
  10. LlNSMElER T.J., PEARSON N.D., Risk measurement: An introduction to value at risk, Champaign, 1L: University of Illinois, 1996.
  11. MARKOWITZ H.M., Portfolio Selection: Efficient Diversification of Investments, Wiley, New York 1959.
  12. MARKOWITZ H.M., Portfolio Selection, Journal of Finance, 1952, 7 (1), 7-91.
  13. MOORE R.E., Interval analysis, Englewood Cliffs. N.J.: Prentice-Hall, 1966.
  14. SEVASTIANOV P., ROG P., A probabilistic approach to fuzzy and interval ordering. Task Quarterly. Special Issue Artificial and Computational Intelligence, 2002, 7(1), 147-156.
  15. SEVASTIANOV P., ROG P., KARCZEWSKI K. A Probabilistic Method for Ordering Group of Intervals, Computer Science, 2002, Politechnika Częstochowska, 2 (2 ), 45-53.
  16. SEVASTIANOV P., ROG P., VENBERG A., The Constructive Numerical Method of Interval Comparison, Proceeding of Int. Conf. PPAM'01 Nałęczów, 2001, 756-761.
  17. SEVASTJANOV P., VENBERG A. Modelling and simulation of power units work under interval uncertainty, Energy, 1998 (3), 66-70 (in Russian).
  18. TANAKA H., GUO P., Portfolio selection based on upper and lower exponential possibility distributions, European Journal of Operational Research, 1999, 114, 115-126.
  19. TANAKA H., GUO P., Possibilistic data analysis and its application to portfolio selection problems, Fuzzy Economic Review, 1999, 2, 3-23.
  20. WADMAN D., SCHNEIDER M., SCHNAIDER E. On the use of interval mathematics in fuzzy expert system. International Journal of Intelligent Systems, 1994, 9, 241-259.
  21. WANG X., KERRE E.E. Reasonable properties for the ordering of fuzzy quantities (I), (II), Fuzzy Sets and Systems, 2001, 112, 375-385, 387-405.
  22. WATADA J., Fuzzy portfolio selection and its applications to decision making, Tatra Mountains Mathematical Publication, 1997, 13, 219-248.
  23. YAGER R.R., DETYNIECKI M., BOUCHON-MEUNIER B., A context-dependent method for ordering fuzzy numbers using probabilities, Information Sciences, 2001, 138, 237-255.
  24. ZADEH L.A., Fuzzy sets, Inform, and Control, 1965, 8, 338-353.
Cytowane przez
Pokaż
ISSN
1230-1868
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu