BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Turek Monika, Senar Xiana Laviana
Tytuł
Potentiometric and Spectroscopic Studies on Di-, Tri- and Tetraglycine with Copper (II) Ions Systems
Potencjometryczne i spektroskopowe badania układów di-, tri- i tetraglicyny z jonami miedzi (II)
Źródło
Zeszyty Naukowe. Chemia Spożywcza i Biotechnologia / Politechnika Łódzka, 2008, nr 72 (nr 1029), s. 15-34, tab., rys., bibliogr. 32 poz.
Słowa kluczowe
Towaroznawstwo, Towaroznawstwo żywności, Chemia, Chemia spożywcza
Commodity science, Food commodities, Chemistry, Food chemistry
Uwagi
summ., streszcz.
Abstrakt
W pracy dokonano przeglądu literaturowego na temat kompleksów jonów miedzi (II) z di-, tri- i tetraglicyną, zwracając uwagę na rodzaje form ich kompleksowania. Przeprowadzono również badania potencjometryczne i spektroskopowe powyższych kompleksów oraz wykazano zależność tworzenia się poszczególnych ich form od pH. (oryg. streszcz.)

This article is a review of literature on copper (II) ions with di-, tri- and tetraglycine complexes, with special reference to kinds of their complexing forms. Potentiometric and spectroscopic studies of the complexes mentioned above have also been performed. Additionally, a dependence on formation of individual complexes on pH has been demonstrated. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Bibliografia
Pokaż
  1. Alexandrova R., Rasshkova G., Alexandrov I., Tsenova W., Tudose R., Costisor O.: Briefly about copper, Experim. Pathol. and Parasitol., 1311, 6851, (2003).
  2. Malmström B. G., Leckner J.: The chemical biology of copper. CUIT. Opin. Chem. Biol. 2, 286-292, (1998).
  3. Hanaki A.: Ternary Complexes fram Cu(II)-Oligopeptide and N-Acetyl-Lhistidine, as Studied by Circular Dichroism Spectrascopy, J. Inorg. Biochem., 99, 147, (1999).
  4. Shleeva S., Tkaca J., Christensona A., Ruzgasa T., Yaropolovb A. I., Whittakerd J. W., Gorton L.: Direct electron transfer between coppercontaining proteins and electrodes, Biosensors and Bioelectronics, 20, 2517, (2005).
  5. Schwendinger M. G., Tauler R., Saetia S., Liedl K. R., Kroemer R. T., Rode B. M.: Salt induced peptide formation: on the selectivity of the copper induced peptide formation under possible prebiotic conditions, Inorg. Chim. Acta, 228, 207-214, (1995).
  6. Kroneck P. M., Vortisch V., Hemmerich P.: Model Studies on the Coordination of Copper in Biological Systems, Eur. J. Biochem IUY, 12, 603, (1980).
  7. Sóvagó I.: In Biocoordination Chemistry: Coordination Equilibria in Biologically Active Systems, Burger K. Ed.; Ellis Horwood: New York, 135-184, (1990).
  8. Fan J., Shen X., Wang J.: Determination of Stability Constants of Copper(II)- Glycine Complex in Mixed Solvents by Copper(II)- Selective Electrode, Croatica Chemica Acta., 76, 2846, (2003).
  9. Remko M., Rode M. B.: Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine, J. Phys. Chem. A, 24, 239, (2005).
  10. Sigel H., Martin R. B.: Coordinating Properties of the Amide Bond. Stability and Structure of Metal Ion Complexes of Peptides and Related Ligands. Chem. Rev. 82, 385, (1982).
  11. Sóvagó I., Osz K.: Metal ion selectivity of oligopeptides, J. Chem. Dalton Trans., 6,3841, (2006).
  12. Gooding J. J., Hibbert D. B., Yang W.: Electrochemical Metal Ion Sensors. Exploiting Amino Acids and Peptides as Recognition Elements, Sensors, l, 75, (2001)
  13. Liler M.: Studies of nucIear magnetic resonance chemical shifts caused by protonation. Part I. Substituted acetamides and some N-methyl and NN-dimethylderivatives, J. Chem. Soc. B., 1,385, (1969).
  14. Tempieton D.M., Sarkar B.: Fletcher-Powell minimization of analytical potentiometric data by microcomputer: application to the Cu(II) complexes of biological polyamines, Department of Biochemistry, University of Toronto, 8, 1-3, (1985).
  15. Khebichat N., Gbalem S.: Theoretical study of dipeptide complexes of copper(II), J. Molecular Struct. Theochem., 777, 107-111, (2006).
  16. Nagypol I., Gergely A.: Studies on Transition-Metal-Peptide Complexes. Part 2. Equilibrium Study of the Mixed Complexes of Copper (II) with Aliphatic Dipeptides and Amino-acids, J. Chem. Soc., 4010, 1977, (1977).
  17. Sóvagó I., Sanna D., Dessl A., Varnagy K., Micera G.: EPR and Potentiometric Reinvestigation of Copper(II) Complexation with Simple Oligopeptides and Related Compounds, J. Inorg. Chem., 63, 99-117, (1996).
  18. Meyers R. A.: Encyclopedia of analytical chemistry, Ed. Wiley, 58, (2006).
  19. Adman E. T.: Copper protein structures, Adv. Protein Chem., 42, 145, (1991).
  20. Santos M. L. P., Faljoni-Alario A., Mangricb A. S., Ferreira A. M.: Antioxidant and pro-oxidant properties of some di-Schiff base copper(II) complexes, J. Inorg. Biochem., 71, 71, (1998).
  21. Varnagy K., Bóka B., Sóvagó I., Sanna D., Marras P., Micera G.: Potentiometric and spectroscopic studies on the copper (II) and nickel (II) complexes of tripeptides of methionine, Inorg. Chim. Acta, 275, 440-446, (1998)
  22. Gergely A., Nagypal I.: Studies on transition-metal-peptide complexes. Part I. Equilibrum and thermochemical study of the copper (II) complexes of glycylglycine, glycyl-DL-o.-alanine, DL-ά-alanylglycine and DL-ά-alanyl-DL-ά-ananine, J. Chem. Soc., Dalton Trans., 11, 1104-1108, (1977).
  23. Łodyga-Chruścińska E., Sanna D., Micera G., Chruścióski L., Olejnik J., Nachman R. J., Zabrocki J.: Chelating ability of proctolin tetrazole analogue, Acta Biochim. Pol., 53, 65-72, (2006).
  24. Łodyga-Chruścińska K., Sanna D., Micera G., Olejnik J., Zabrocki J.: A new class of peptide chelating agents towards copper(II) ions, Polyhedron, 20, 1915¬1923, (2001).
  25. Prenesti K., Daniele P. G., Prencipe M., Ostacoli G.: Spectrum-structure correlation for visible absorption spectra of copper(II) complexes in aqueous solution, Polyhedron, 18,3233-3241, (1999).
  26. Prenesti E., Daniele P.G., Toso S.: Visible spectrophotometric determination of metal ions: the influence of structure on molar absorptivity value of copper(II) complexes in aqueous solution, Anal. Chim. Acta, 459, 323-336, (2002).
  27. Gans P., Sabatini A., Vacca A.: SUPERQUAD: an improved general program for computation of formation constants from potentiometric data, J. Chem. Soc., Dalton Trans., 1195-1200, (1985).
  28. Shtyrlin V. G., Gogolashvili E. L., Zakharov A. V.: Composition, stability, and stability of copper(II) dipeptide complexes, J. Chem. Soc., Dalton Trans., 1293¬1297, (1989).
  29. Hanaki A., Kawashima T., Konishi T., Takano T., Mabuchi D., Odani A., Yamauchi O.: Copper(II)-tripeptide complexes in aqueous solution. Effects of the C-terminal chelate ring size on the coordination structure of doubly deprotonated complex species, J. Inorg. Biochem., 77,147-155, (1999).
  30. Bal W., Kozlowski H., Lisowski M., Pettit L.D.: A dramatic change in the interaction of Cu(II) with bio-peptides promoted by SDS--a model for complex formation on a membrane surface, J. Inorg. Biochem., 55, 41-45, (1994).
  31. Lukas M., Ky'vala M., Hermann P., Lukes I., Sanna D., Micera G.: Complexing properties of [(glycylamino)methyl] phosphinic acids towards Co2+, Ni2+, Cu2+ and Zn2+ ions in aqueous solutions, J. Chem. Soc., Dalton Trans., 6, 2850-2857, (2001).
  32. Szabó-Phinka T., Rockenbauer A., Korecz L.: ESR study of the copper(II)-glycylglycine equilibrum system in fluid aqueous solution computer analysis of overlapping multispecies spectra, Magn. Reson. Chem., 37,484-492, (1999).
Cytowane przez
Pokaż
ISSN
1509-7013
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu