BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Rozmus Dorota (Akademia Ekonomiczna im. Karola Adamieckiego w Katowicach)
Tytuł
Wykorzystanie podejścia zagregowanego w taksonomii
Cluster Ensemble
Źródło
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu. Taksonomia (15), 2008, nr 7 (1207), s. 330-336, rys., tab., bibliogr. 8 poz.
Tytuł własny numeru
Klasyfikacja i analiza danych - teoria i zastosowania
Słowa kluczowe
Taksonomia, Algorytmy, Analiza danych
Taxonomy, Algorithms, Data analysis
Uwagi
summ.
Abstrakt
Zasadniczym celem artykułu jest porównanie zdolności rozpoznawania poprawnej struktury klas uzyskanych za pomocą klasycznych algorytmów taksonomicznych oraz przedstawionego w literaturze podejścia wielomodelowego. (fragment tekstu)

Ensemble methods are used in classification and regression to achieve better prediction accuracy. Recent research reveals that ensemble methods can be used also in taxonomy in order to gain better and more robust objects' classification [Fred, Jain 2005; Kuncheva et al. 2006]. Moreover aggregated approach decreases the risk of gaining a wrong classification because of choosing an unsuitable algorithm. The main aim of the article is to show the possibility of applying one of the most popular ensemble methods, which is bagging [Breiman 1996] in taxonomy. We also show the results of research that main aim was to compare the results of classification with using both classical and ensemble methods with the existing class structure. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Bibliografia
Pokaż
  1. Bezdek J.C. (1981), Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York.
  2. Blake C., Keogh E., Merz C.J. (1988), UCI Repository of Machine Learning Databases, Department of Information and Computer Science, University of California, Irvine.
  3. Breiman L. (1996), Bagging Predictors, „Machine Learning, 26(2), s. 123-140.
  4. Fred N.L., Jain A.K. (2005), Combining Multiple Clusterings Using Evidence Accumulation, „IEEE Transactions on PAMI", 27(6), s. 835-850.
  5. Gatnar E. (2001), Nieparametryczna metoda dyskryminacji i regresji, Wydawnictwo Naukowe PWN, Warszawa.
  6. Kaufman L., Rousseeuw P.J. (1990), Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, New York.
  7. Kuncheva L.I., Hadjitodorov S.T., Todorova L.P. (2006), Experimental Comparison of Cluster Ensemble Methods, „Proc FUSION 2006", Florence, Italy.
  8. Leisch F. (1999), Bagged Clustering, Adaptive Information Systems and Modeling in Economics and Management Science, Working Paper 51, SFB.
Cytowane przez
Pokaż
ISSN
1899-3192
1505-9332
Język
pol
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu