BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Makieła Kamil (Grand Valley State University, Stany Zjednoczone / Kolegium Ekonomii, Finansów i Prawa)
Economic Growth Decomposition : an Empirical Analysis Using Bayesian Frontier Approach
Central European Journal of Economic Modelling and Econometrics (CEJEME), 2009, vol. 1, nr 4, s. 333-369, rys., tab., bibliogr. 45 poz.
Słowa kluczowe
Wzrost gospodarczy, Wnioskowanie bayesowskie, Produktywność, Analiza stochastyczna
Economic growth, Bayesian inference, Productivity, Stochastic analysis
summ.; Klasyfikacja JEL: C11, C23, O47, O57
This paper presents an empirical analysis of economic growth in respect of its components, namely input change, technological progress and changes in efficiency. In this work the Bayesian Stochastic Frontier method as well as the output change decomposition procedure, are used in order to evaluate their influence on economic growth. The use of panel data in the study allows for a detailed analysis of economic growth in a given economy and enables the search for general patterns that govern the process. The study is carried using a set of sixteen countries over the period 1995 - 2005. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Pełny tekst
  1. Aigner D., Lovell C. K., Schmidt P. (1977), Formulation and Estimation of Stochastic Frontier Production Function Models, Journal of Econometrics 6, 21-37
  2. Baltagi B. H. (2005), Econometric Analysis of Panel Data, Hoboken: Wiley.
  3. Barro R. J., Sala-i-Martin X. (1999), Economic Growth, Cambridge: MIT Press
  4. Badunenko O., Henderson D. J., Zelenyuk V. (2008), Techological Change and Transition: Relative Contributions to Worldwide Growth During the 1990s, Oxford Bulletin of Economics and Statistics 70, 461-492
  5. Caselli F., Coleman II W. J. (2006), The World Technology Frontier, American Economic Review 96, 499-522
  6. Charnes A., Coopers W. W., Rhodes E. (1978), Measuring the Efficiency of Decision Making Units, European Journal of Operational Research 3, 429-444
  7. Cobb S., Douglas P. (1928), A Theory of Production, American Economic Review 18, 139-165
  8. Dhawan R., Jochumzen P. (1999), Stochastic Frontier Production Function With Errors-In-Variables, Working Paper, 1-32
  9. El-Kahal S. (2001), Business In Asia Pacific, Oxford: Oxford University Press
  10. EU KLEMS project (2008), EU KLEMS Productivity Database, Retrieved May 11, 2009, from EU KLEMS website:
  11. Eurostat-OECD, (2006), Methodological Manual on Purchasing Power Parities, Retrieved May 12, 2009, from OECD:
  12. Färe R., Grosskopf S., Norris M., Zhang Z. (1994), Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries, American Economic Review 84, 66-83
  13. Farrell M. J. (1957), The Measurement of Productive Efficiency, Journal of the Royal Statistical Society (Series A) 120, 253-290
  14. Fried H. O., Lovell C. A. K., Schmidt S. S. (2008), The Measurement of Productive Efficiency and Productivity Growth, New York: Oxford University Press.
  15. Greene W. H. (2002), Econometric Analysis (5th edition), Upper Saddle River: Prentice Hall.
  16. Greene W. H. (2008), The Econometric Approach to Efficiency Analysis. [in:] H. O. Fried, C. A. K. Lovell, S. S. Schmidt, The Measurement of Productive Efficiency and Productivity Growth, New York: Oxford University Press, 92-159
  17. Gylfason T. (1999), Principles of Economic Growth, Oxford: Oxford University Press
  18. Helpman E., Rangel A. (1999), Adjusting to a new techology: experience and training, Journal of Economic Growth 4, 359-383
  19. Henderson D. J., Russell R. R. (2005), Human Capital and Convergence: A production Frontier Approach, International Economic Review 46, 1167-1205
  20. Jondrow J., Lovell K. C., Materov I., Schmidt P. (1982), On the Estimation of Technical Inefficiency in the Stochastic Frontier Production Function Model, Journal of Econometrics 19, 233-238
  21. Judson R. A., Owen A. L. (1997), Estimating Dynamic Panel Data Models: A practical guide for macroeconomists, Retrieved June 10, 2009, from Finance and Economics Discussion Series no. 97-3:
  22. Kim Y., Schmidt P. (2000), A Review and Empirical Comparison of Bayesian and Classical Approaches to Inference on Efficiency Levels in Stochastic Frontier Models with Panel Data, Journal of Productive Analysis 14, 91-98
  23. King G. (1696). Natural and Political Observations and Conclusions upon the State and Condition of England, London.
  24. Koop G., Osiewalski J., Steel M. F. (1999), The Components of Output Growth: A Stochastic Frontier Analysis, Oxford Bulletin of Economics and Statistics 61, 455-487
  25. Koop G., Osiewalski J., Steel M. F. (2000a), A Stochastic Frontier Analysis of Output Level and Growth in Poland and Western Countries, Economics of Planning 33, 185-202
  26. Koop G., Osiewalski J., Steel M. F. (2000b), Modelling the Sources of Output Growth in a Panel of Countries, Journal of Business & Economic Statistics 18, 284-299
  27. Koop G., Steel M. F., Osiewalski J. (1995), Posterior Analysis of Stochastic Frontier Models using Gibbs sampling, Computational Statistics 10, 353-373
  28. Kumar S., Russell R. R. (2002), Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence, American Economic Review 92, 527-548
  29. Kumbhakar S. C., Wang H.-J. (2005), Estimation of growth convergence using a stochastic production frontier approach, Economics Letters 88, 300-305
  30. Marzec J., Osiewalski J. (2008), Bayesian inference on technology and cost efficiency of bank branches Bank i Kredyt [Bank and Credit] 39, 29-43
  31. Meeusen W., van den Broeck J. (1977), Efficiency estimation from Cobb-Douglas Production Function with Composed Error, International Economic Review 8, 435-444
  32. O'Mahony M., Timmer M. P. (2009), Output, Input and Productivity Measures at the Industry Level: the EU KLEMS Database, Economic Journal 119, F374- F403
  33. OECD. (2003), OECD Measuring Productivity - OECD Manual; Measurement of Aggregate and Industry-Level. Retrieved May 12, 2009, from OECD website:
  34. Osiewalski J. (2001), Ekonometria Bayesowska w Zastosowaniach [Bayesian Econometrics in Applications; in Polish], Kraków: Cracow University of Economics Press
  35. Schreyer P. (2003), Capital stocks, capital services and multi-factor productivity measures, OECD Economic Studies 37, 163-184
  36. Schreyer P. (2007), Old and New Asset Boundaries: A Review Article on Measuring Capital in the New Economy, International Productivity Monitor 15, 75-80
  37. Schreyer P., Koechlin F. (2002), Purchasing power parities - measurement and uses, Statistics Brief 3, 1-8.
  38. The Economist, (2000), South Korea dumps the past, at last, The Economist print edition, Seoul
  39. The Economist, (2005), Addio, Dolce Vita, The Economist print edition, Rome
  40. The Economist, (2007), A new sick man of Europe, The Economist print editiom, Lisbon
  41. Tierney L. (1994), Markov Chains for Exploring Posterior Distributions, Annals of Statistics 22, 1701-1762
  42. Timmer M., O'Mahony M., van Ark B., (2007), The EU KLEMS Growth and Productivity Accounts: An Overview. Groningen: EU KLEMS project
  43. Van Ark B., O'Mahony M., Ypma G., (2007), The EU KLEMS Productivity Report, Groningen: EU KLEMS project
  44. Yamamura E., Shin I. (2007), Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence: Comment, Economic Bulletin 15, 1-8
  45. Yu B., Mykland P., (1994), Looking at Markov samplers through CUMSUM path plots: a simple diagnostic idea, Technical Report 413, Department of Statistics, University of California, Berkeley
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu