BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Witek Ewa (Akademia Ekonomiczna im. Karola Adamieckiego w Katowicach)
Tytuł
Zastosowanie wybranych metod taksonomicznych do podziału krajów Unii Europejskiej
Using the Selected Methods for Classification of EU Countries
Źródło
Debiuty Ekonomiczne, 2009, nr 9, s. 55-63, tab., rys., bibliogr. 16 poz.
Tytuł własny numeru
Zastosowanie metod ilościowych w ekonomii
Słowa kluczowe
Taksonomia, Metody taksonomiczne, Analiza skupień, Metoda k-średnich, Metoda najbliższego sąsiedztwa, Metoda Warda
Taxonomy, Taxonomic methods, Cluster analysis, K-means methods, Neighbor joining distance method, Ward method
Uwagi
summ.
Abstrakt
W artykule podjęto próbę wykorzystania metod taksonomicznych do klasyfikacji krajów Unii Europejskiej. Do podziału państw europejskich na klasy o podobnym rozwoju gospodarczym wykorzystano klasyczne metody taksonomiczne: metody hierarchiczne, takie jak metoda najbliższego sąsiedztwa oraz metoda Warda, metody optymalizacyjne: metoda k-średnich oraz k-medoidów. (fragment tekstu)

We consider the problem of determining the structure of clustered data, without prior knowledge of the number of clusters or any other information about their composition. Most clustering done in practice is based largely on heuristic and intuitive procedures. One of the widely used class of methods involves hierarchical agglomerative clustering (single-link, Ward method) and relocation methods (k-means). We review a general methodology for model-based clustering that provides a principal statistical approach to these issues. The article presents application of all these methods in the economic analysis- clustering of the EU countries, which is comparatively rare. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Bibliografia
Pokaż
  1. Banfield J.D., Raftery A.E., Model-based gaussian and non-gaussian clustering, "Biometrics" 1993, nr 49, s. 803-821.
  2. Bensmail H., Celeux G., Raftery A.E., Robert C.P., Inference in model-based cluster analysis, "Statistics and Computing" 1997, nr 7, s. 10.
  3. Biernacki C, Celeux G., Govaert G., Langrognet F., Model-based cluster and disriminant analysis with the MIXMOD software, "Computational Statistics and Data Analysis" 2006, nr 51, s. 587-600.
  4. Bock H.H., Probabilistic models in cluster analysis, "Computational Statistics and Data Analysis" 1996, nr 23, s. 5-28.
  5. Bock H.H., Probabilistic approaches in cluster analysis, "Bulletin of the International Statistical Institute" 1998, nr 57, s. 603-606.
  6. Dempster A.P., Laird N.M., Rubin D.B., Maximum likelihood for incomplete data via the EM algorithm (with discussion), "Journal of the Royal Statistical Society" 1977, ser. В, 39, s.1-38.
  7. Fraley C., Raftery A.E., How many clusters? Which clustering method? Answers via model-based cluster analysis, "The Computer Journal" 1998, nr 41, s. 577-588.
  8. Fraley C., Raftery A.E., Model-based clustering, discriminant analysis, and density estimation, "Journal of the American Statistical Association" 2002, nr 97, s. 611-631.
  9. Fraley C., Raftery A.E., Bayesian regularization for normal mixture estimation and model-based clustering, Technical Report 486, Department of Statistics, University of Washington 2005.
  10. Fraley C., Raftery A.E. , MCLUST Version 3: An R package for normal mixture modeling and model-based clustering, 2005, s. 1-50.
  11. Metody statystycznej analizy wielowymiarowej w badaniach marketingowych, red. E. Gatnar, M. Walesiak, Wydawnictwo AE we Wrocławiu, Wrocław 2004.
  12. McLachlan G. J., Basford K.E., Mixture models: inference and applications to clustering, Marcel Dekker, New York 1988.
  13. McLachlan G.J., Peel D., Finite mixture models, Wiley, New York 2000.
  14. Schwarz G., Estimating the dimension of a model, "The Annals of Statistics" 1978, nr 6, s. 461-464.
  15. Statystyczne metody analizy danych, red. W. Ostasiewicz, Wydawnictwo AE we Wrocławiu, Wrocław 1998, s. 241-244.
  16. Witek E., Metoda taksonomii oparta na modelach mieszanych, "Taksonomia" 2008, nr 15, s. 199-206.
Cytowane przez
Pokaż
ISSN
1730-2145
Język
pol
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu