BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Wróbel-Rotter Renata (Uniwersytet Ekonomiczny w Krakowie / Wydział Zarządzania)
Tytuł
Obszary stabilności rozwiązania empirycznych modeli równowagi ogólnej : zastosowanie metod analizy wrażliwości
Stability Regions for Empirical General Equilibrium Models : the Application of Sensitivity Analysis
Źródło
Zeszyty Naukowe / Uniwersytet Ekonomiczny w Krakowie, 2011, nr 873, s. 121-135, rys., bibliogr. 17 poz.
Cracow Review of Economics and Management
Słowa kluczowe
Test Kołmogorowa-Smirnowa, Obliczeniowy model równowagi ogólnej, Analiza wrażliwości, Metoda Monte Carlo
Kolmogorov-Smirnov test, Computable General Equilibrium model (CGE), Sensitivity analysis, Monte Carlo method
Uwagi
summ.
Abstrakt
W artykule zaprezentowano jedną z możliwych aplikacji analizy wrażliwości w odniesieniu do empirycznych modeli równowagi ogólnej, w szczególności do oceny zakresu wartości parametrów strukturalnych zapewniających stabilność rozwiązania. Zastosowanie metod analizy wrażliwości oparte jest na metodach filtrowania Monte Carlo. Polegają one na wygenerowaniu próby losowej z rozkładu a priori wektora parametrów strukturalnych, bądź innego arbitralnie przyjętego rozkładu prawdopodobieństwa, i następnie, ocenie zakresu wartości odpowiadających stabilności rozwiązania modelu. Określenie wartości parametrów, dla których model jest stabilny, stanowi kluczowe zadanie z punktu widzenia estymacji i zastosowania modelu do analiz ekonomicznych. Całość zagadnień została zaprezentowana na przykładzie empirycznego modelu równowagi ogólnej zaczerpniętego z literatury. (abstrakt autora)

The paper presents one application of sensitivity analysis methods for empirical general equilibrium models. Sensitivity analysis allows parameter space to be investigated to ensure model stability. The main method used is called Monte Carlo filtering, in which a random sample is generated from a prior distribution. According to the acceptability of the obtained solutions of the model, the results are classified into two sets, corresponding to the behaviour or non-behaviour of the model. A formal Kolmogorov-Smirnov test is then performed. The methods are illustrated with a standard general equilibrium model taken from the literature. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
dostęp tylko z terenu Kampusu UEK
Bibliografia
Pokaż
  1. Berliant M., Dakhlia S. [1997], Sensitivity Analysis for Applied General Equilibrium Models in the Presence of Multiple Equilibria, GE, Growth, Math Methods 9709003, Economics Working Paper Archive.
  2. Blanchard O.J., Kahn C.M. [1980], The Solution of Linear Difference Models under Linear Expectations, "Econometrica", nr 48.
  3. Conover M.J. [1999], Practical Nonparametric Statistics, Wiley, New York.
  4. Erceg C.J., Henderson D.W., Levin A.T. [2000], Optimal Monetary Policy with Staggered Wage and Price Contracts, "Journal of Monetary Economics", nr 46.
  5. Judd K.L. [1998], Numerical Methods in Economics, MIT Press, Hongkong.
  6. Juillard M. [1996], Dynare: A Program for the Resolution and Simulation of Dynamic Models with forward Variables through the Use of a Relaxation Algorithm, http://www.cepremap.cnrs.fr/dynare, CEPREMAP, Couverture Orange, 9602.
  7. Osidele O.O., Beck M.B. [2004], Food Web Modelling for Investigating Ecosystem Behaviour in Large Reservoirs of the South-eastern United States: Lessons from Lake Lanier, Georgia, "Ecological Modelling", nr 173.
  8. Rabanal P., Rubio-Ramírez J.F. [2005], Comparing New Keynesian Models of the Business Cycle: A Bayesian Approach, "Journal of Monetary Economics", nr 52.
  9. Ratto M. [2006], Global Sensitivity Analysis for DSGE Models, manuscript, IRC/SPRA.
  10. Ratto M. [2007], Analysing DSGE Models with Global Sensitivity Analysis, "Computational Economics", nr 30.
  11. Salteli A. [2002], Sensitivity Analysis for Importance Assessment, "Risk Analysis", nr 22.
  12. Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M., Tarantola S. [2008], Global Sensitivity Analysis. The Primer, Wiley, England.
  13. Saltelli A., Tarantola S., Campolongo F., Ratto M. [2004], Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, John Wiley & Sons, England.
  14. Sobol' I.M. [1976], Uniformly Distributed Sequences with Additional Uniformity Properties, "USSR Computational Mathematics and Mathematical Physics", nr 16.
  15. Wróbel-Rotter R. [2010a], Empiryczne modele równowagi ogólnej: gospodarstwa domowe i producent finalny, Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, Seria: Ekonomia, w druku.
  16. Wróbel-Rotter R. [2010b], Sektor producentów pośrednich w empirycznym modelu równowagi ogólnej, Zeszyty Naukowe UEK, Seria: Ekonomia, w druku.
  17. Wróbel-Rotter R. [2010c], Struktura empirycznego modelu równowagi ogólnej dla niejednorodnych gospodarstw domowych, Zeszyty Naukowe UEK, Seria: Ekonomia, w druku.
Cytowane przez
Pokaż
ISSN
1898-6447
Język
pol
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu