BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Dziewulski Paweł (Szkoła Główna Handlowa w Warszawie, doktorant)
On Time-to-Build Economies with Multiple-Stage Investments
Gospodarka Narodowa, 2011, nr 9, s. 23-49, bibliogr. 49 poz.
The National Economy
Słowa kluczowe
Równowaga gospodarcza, Analiza dynamiczna, Analiza porównawcza, Równowaga ogólna
Economic equilibrium, Dynamic analysis, Comparative analysis, General equilibrium
The paper presents a constructive method for studying dynamic general equilibrium models with time-to-build technology. In the work, the author modifies a seminal work by Kydland and Prescott [1982] by allowing agents to make multi-stage investments. In this framework, consumers decide on how much to consume each period, and how much to invest in future capital, which will yield them income in future periods. Unlike in Kydland and Prescott, agents are allowed to postpone, stop or accelerate the investment by devoting a certain amount of their product to investments, which allows consumers to smooth investment expenses throughout the investment process rather than incur the whole cost at the beginning of the investment, as in Kydland and Prescott. The analysis of the model poses several technical issues, which are tackled in the article. First, the premises of the model exhibit unbounded returns, which makes several dynamic programming arguments invalid. Second, since the imposed assumptions do not exclude boundary solutions, the consumer value function of the underlying problem might not be differentiable, as the standard Benveniste and Scheinkman [1979] argument does not hold. Finally, as the feasible action set is not a lattice, standard monotone comparative statics cannot be introduced in order to bring about the monotonicity results concerning the policy functions in the model. Using dynamic programming methods and monotone operators theory (by Matkowski and Nowak [2009], Quah and Strulovici [2009], and Rincón-Zapatero and Santos [2009]), the author presents a convergent algorithm for the computation of optimal allocations of the model, as well as proposes an economy that decentralizes the allocations in the Arrow-Debreu general equilibrium. Eventually, the author presents some comparative statics results useful for a more general analysis of the problem, and discusses the efficiency of the presented economy.
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
  1. Antoniadou E., [2006], Comparative statics for the consumer problem, "Journal of Economic Theory", Exposita Note.
  2. Benveniste L., Scheinkman J., [1979], On the differentiability of the value function in dynamic models of economics, "Econometrica", 47(3), pp. 727-32.
  3. Berge C., [1963], Topological spaces: Including a treatment of multi-valued functions, vectors paces and convexity, Dover Publications, Inc., New York.
  4. Bertsekas D.P., Shreve S.E., [1978], Stochastic Optimal Control: The Discrete Time Case, Academic Press, New York.
  5. Bewley T.F., [1972], Existence of equilibria in economies with infinitely many commodities, "Journal of Economic Theory", 4, pp. 514-540.
  6. Bewley T.F., [2007], General Equilibrium, Overlapping Generations Models and Optimal Growth Theory, Harvard University Press.
  7. Blackwell D., [1965], Discounted dynamic programming, "The Annals of Mathemetics and Statistics", 36(1), pp. 226-235.
  8. Bonnisseau J.-M., Cornet B., [1988], Valuation equilibrium and Pareto optimum in non-convex economies, "Journal of Mathematical Economics", 17, pp. 293-308.
  9. Boyd III, J.H., [1990], Recursive utility and the Ramsey problem, "Journal of Economic Theory", 50, pp. 326-345.
  10. Brown D.J., [1991], Equilibrium analysis with nonconvex technologies, [in:] W. Hildenbrand, H. Sonnenschein (eds.), "Handbook of Mathematical Economics", North Holland, Amsterdam, The Netherlands.
  11. Cornet B., [1990], Marginal cost pricing and Pareto optimality, [in:] P. Champsaur (ed.), Essays in Honor of Edmond Malinvaud, MIT Press, Cambridge, Massachusetts.
  12. Cornet B., [1981], The second welfare theorem in nonconvex economies, CORE discussion paper No. 8630.
  13. Daniele P., [2008], Lagrange Multipliers and infinite-dimensional equilibrium problems, "Journal of Global Optimization", 40, pp. 65-70.
  14. Daniele P., Giuffrè S., Idone G., Maugeri A., [2007], Infinite dimensional duality and applications, "Mathematische Annalen", 339, pp. 221-239.
  15. Durán J., [2003], Discounting long run average growth in stochastic dynamic programs, "Economic Theory", 22, 395-413.
  16. Guesnerie R., [1975], Pareto Optimality in non-convex economies, "Econometrica", 43, pp. 1-29.
  17. Hernández-Lerma O., Lasserre J.B., [1999], Further Topics on Discrete-Time Markov Control Processes, Springer-Verlag, New York.
  18. Khan M.A., [1988], Ioffe's normal cone and the foundations of welfare economics, "Economic Letters", 28, pp. 5-19.
  19. Khan M.A., [1991], Ioffe's normal cone and the foundations of welfare economics: Infinite dimentional theory, Journal of Mathematical Analysis and Applications, 161, pp. 284-298.
  20. Khan M.A., [1999], The Mordukhovich normal cone and the foundations of welfare economics, "Journal of Public Economic Theory", 1, pp. 309-338.
  21. King R.G., Rebelo S.T., [2000], Resuscitating Real Business Cycles, NBER Working Papers, 7534, National Bureau of Economic Research, Inc.
  22. Kydland F.E., Prescott E.C., [1982], Time to Build and Aggregate Fluctuations, "Econometrica", 50(6), pp. 1345-70.
  23. Lange O., [1942], The foundations of welfare economics, "Econometrica", 10, pp. 215-228.
  24. Le Van C., Morhaim L., [2002], Optimal growth models with bounded or unbounded returns: A unifying approach, "Journal of Economic Theory", 105, pp. 158-187.
  25. Le Van C., Vailakis Y., [2005], Recursive utility and optimal growth with bounded or unbounded returns, "Journal of Economic Theory", 123, pp. 187-209.
  26. Le Van C., Morhaim L., Vailakis Y., [2008], Monotone concave operators: An application to the existence and uniqueness of solutions to the Bellman equation, L'archive HAL, mimeo.
  27. Le Van C., Saglam H.C., [2004], Optimal growth models and the Lagrange multiplier, "Journal of Mathematical Economics", 40, pp. 393-410.
  28. Matkowski J., Nowak A.S., [2009], On discounted dynamic programming with unbounded returns, University of Zielona Góra, mimeo.
  29. Milgrom P., Roberts J., [1994], Comparing equilibria, "American Economic Review", 84(3), pp. 441-459.
  30. Milgrom P., Segal I., [2002], Envelope theorems for arbitrary choice sets, "Econometrica", 70(2), pp. 583-601.
  31. Milgrom P., Shannon C., [1994], Monotone comparative statics, "Econometrica", 62(1), pp. 157-180.
  32. Mirman L.J., Ruble R., [2003], Lattice programming and consumer choice, Working Paper.
  33. Morand O., Reffett K., Tarafdar S., [2009], A nonsmooth approach to envelope theorems, Arizona State University, mimeo.
  34. Mordukhovich B.S., [2006], Variational Analysis and Generalized Differentiation II: Applications, Springer Verlag, Berlin.
  35. Negishi T., [1960], Welfare economics, and the existence of an equilibrium for a competitive economy, "Metronomica", 12(2-3), pp. 92-97.
  36. Papageorgiou N.S., [1994], Optimal programs and their price characterization in a multisector growth model with uncertainty, "Proceedings of the American Mathematical Society", 122, pp. 227-240.
  37. Quah J.K.-H., [2007], The comparative statics of constrained optimization problems, "Econometrica", 75(2), pp. 401-431.
  38. Quah J.K.-H., Strulovici B., [2009], Comparative statics, informativeness, and the interval dominance order, "Econometrica", 77(6), pp. 1949-1992.
  39. Rincón-Zapatero J.P., Palmero C., [2009], Corrigendum to 'Existence and uniqueness of solutions to the Bellman equation in the unbounded case', Econometrica, 71, pp.1519-1555, "Econometrica", 77, pp. 317-318.
  40. Rincón-Zapatero J.P., Palmero C., [2003], Existence and uniqueness of solutions to the Bellman equation in the unbounded case, "Econometrica", 71, pp. 1519-1555.
  41. Rincón-Zapatero J.P., Palmero C., [2007], Recursive utility with unbounded aggregators, "Economic Theory", 33, pp. 381-391.
  42. Rincón-Zapatero J.P., Santos M.S., [2009], Differentiability of the value function without interiority assumptions, "Journal of Economic Theory", 144(5), 1948-1964.
  43. Romer D., [2005], Advanced Macroeconomics, 3rd edition, McGraw-Hill/Irwin.
  44. Stokey N., Lucas R., Prescott E., [1989], Recursive methods in economic dynamics, Harvard University Press.
  45. Tarafdar S., [2009], Optimization in economies with nonconvexities, Arizona State University, mimeo.
  46. Topkis D.M., [1968], Ordered optimal solutions, PhD thesis, Stanford University.
  47. Topkis D.M., [1998], Supermodularity and complementarity, Frontiers of Economic Research series, Princeton University Press.
  48. Veinott F., [1992], Lattice programming: qualitative optimization and equilibria, MS Stanford, mimeo.
  49. Wickens M., [2008], Macroeconomic Theory: A Dynamic General Equilibrium Approach, Princeton University Press.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu