BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Migdał-Najman Kamila
Tytuł
Ocena jakości wyników grupowania - przegląd bibliografii
Cluster Validity Measurement - a Bibliography Review
Źródło
Przegląd Statystyczny, 2011, vol. 58, z. 3-4, s. 281-299, schem., bibliogr. 178 poz.
Słowa kluczowe
Indeksy oceny klastrów, Analiza skupień, Klasyfikacja, Przegląd literatury
Cluster validity indices, Cluster analysis, Classification, Literature review
Uwagi
streszcz., summ.
Abstrakt
W artykule dokonano syntetycznego przeglądu literatury tematu począwszy od prac P. Jaccarda z roku 1908 a skończywszy na pracach B. Mirkina z 2011 roku. Dokonano próby klasyfikacji znanych wskaźników jakości grupowania, uwzględniając kryteria pochodzące z rożnych dyscyplin naukowych. W szczególności dokonano klasyfikacji wskaźników optymalnej liczby skupień jako podklasy wskaźników jakości grupowania. Wyniki prezentowanych badań powinny być użyteczne dla wszystkich zajmujących się problemami grupowania i klasyfikacji. (abstrakt oryginalny)

In the article are presented the synthetic review of the literature from P. Jaccard in 1908 to B. Mirkin, 2011. In this paper, the concept and classification of cluster validity indices are proposed. There are presented classification of validity indices to find the optimal number of clusters. The results of this study should be useful for all concerned with the problems of classification. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Albatineh A.N., Niewiadomska-Bugaj M. [2011], MCS: A method for finding the number of clusters, Journal of classification, 28, 2, 184-209.
  2. Aliguliyev R.M. [2009], Performance evaluation of density-based clustering methods, Information Sciences, 179, 20, 3583-3602.
  3. Anderberg M.R. [1973], Cluster analysis for applications, Academic Press, New York, San Francisco, London.
  4. Anderson A.J.B. [1971], Numeric examination of multivariate soil samples, Mathematical geology, 3, 1, 1-14.
  5. Arabie P., Boorman S.A. [1973], Multidimensional scaling of measures of distance between partitions, Journal of Mathematical Psychology, 10, 2, 148-203.
  6. Arabie P., Hubert L.J., Soete G.De (editors) [1996], Clustering and classification, World Scientific Publishing Co. Pte. Ltd., Singapore.
  7. Ayala G., Epifanio I., Simo A., Zapater V. [2006], Clustering of spatial point patterns, Computational Statistics & Data Analysis 50.
  8. Baker F.B. [1974], Stability of two hierarchical grouping techniques, case 1: sensitivity to data errors, Journal of the American Statistical Association, 69, 346, 440-445.
  9. Baker F.B., Hubert L.J. [1975], Measurig the power of hierarchical cluster analysis, Journal of the American Statistical Association, 70, 349, 31-38.
  10. Balicki A. [2009], Statystyczna analiza wielowymiarowa i jej zastosowania społeczno-ekonomiczne, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk.
  11. Ball G.H., Hall D.J. [1965], ISODATA, A novel method of data analysis and pattern classification, Technical report, Stanford Research Institute, Menlo Park, CA, (NTIS No. AD 699616).
  12. Bandyopadhyay S., Maulik U. [2001], Nonparametric genetic clustering: comparison of validity indices, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 31, 1, 120-125.
  13. Ben-Hur A., Elisseeff A., Guyon I. [2002], A stability based method for discovering structure in clustered data, Pacific Symposium on Biocomputing 7, 6-17.
  14. Bensaid A.M., Hall L.O., Bezdek J.C., Clarke L.P., Silbiger M.L., Arrington J.A., Murtagh R.F. [1996], Validity-guided (re)clustering with applications to image segmentation, IEEE Transactions on, Fuzzy Systems, 4, 2, 112-123.
  15. Bezdek J.C. [1974a], Numerical taxonomy with fuzzy sets, Journal of Mathematical Biology, 1, 1, 57-71.
  16. Bezdek J.C. [1974b], Cluster validity with fuzzy sets, Journal of Cybernetics, 3, 58-72
  17. Bezdek J.C. [1981], Pattern recognition with fuzzy objective function algorithms, Plenum Press, NY.
  18. Bezdek J.C., Pal N.R. [1998], Some new indexes of cluster validity, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions, 28, 3, 301-315.
  19. Bock H.H. [1985], On some significance tests in cluster analysis, Journal of classification, 2, 1, 77-108.
  20. Bolshakova N., Azuaje F. [2003], Cluster validation techniques for genome expression data, Signal Processing, 83, 4, 825-833.
  21. Brun M., Sima C., Hua J., Lowey J., Carroll B., Suh E., Dougherty E.R. [2007], Model-based evaluation of clustering validation measures, Pattern Recognition, 40, 3, 807-824.
  22. Bryan J. [2004], Problems in gene clustering based on gene expression data, Journal of multivariate analysis, 90, 1, 44-66.
  23. Caliński T., Harabasz J.S. [1974], A dendrite method for cluster analysis, Communications in Statistics - Theory and Methods, 3, 1, 1-27.
  24. Celeux G., Soromenho G. [1996], An entropy criterion for assessing the number of clusters in a mixture model, Journal of classification, 13, 2, 195-212.
  25. Chicco G., Akilimali J.S. [2010], Renyi entropy-based classification of daily electrical load patterns, IET Generation, Transmission & Distribution, 4, 6, 736-745.
  26. Chou C.H., Su M.C., Lai E. [2004], A new cluster validity measure and its application to image compression, Pattern Analysis & Applications, 7, 2, 205-220.
  27. Cios K.J., Pedrycz W., Świniarski R.W., Kurgan L.A. [2007], Data mining, a knowledge discovery approach, Springer Science+Business Media, LLC.
  28. Costner H.L. [1965], Criteria for measures of association, American Sociological Review, 30, 3, 341-353.
  29. Cunningham K.M., Ogilvie J.C. [1972], Evaluation of hierarchical grouping techniques: a preliminary study, The Computer Journal, 15, 3, 209-213.
  30. Davis J.A. [1967], A partial coefficient for Goodman and Kruskal's gamma, Journal of the American Statistical Association, 62, 317, 189-193.
  31. Davies D.L., Bouldin D.W. [1979], A cluster separation measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1, 2, 224-227.
  32. Dimitriadou E., Dolniˇcar S., Weingessel A. [2002], An examination of indexes for determining the number of clusters in binary data sets, Psychometrika, 67, 3, 137-160.
  33. Ding C., Li T., Peng W. [2008], On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing, Computational statistics and data analysis, 52, 8, 3913-3927.
  34. Dolnicar S., Leisch F. [2004], Segmenting markets by bagged clustering, Australasian marketing journal, 12, 1, 51-65.
  35. Dubes R.C., Jain A.K. [1979], Validity studies in clustering methodologies, Pattern Recognition, 11, 4, 235-254.
  36. Duda R.O., Hart P.E., Stork D.G. [2002], Pattern classification, Wiley, New York.
  37. Dudoit S., Fridlyand J. [2002], A prediction-based resampling method for estimating the number of clusters in a dataset, Genome Biology, 3, 7, research 0036-research 0036.21.
  38. Dunn J.C. [1973], A fuzzy relative of the ISODATA process and its use in detecting compact wellseparated clusters, Journal of Cybernetics, 3, 3, 32-57.
  39. Dunn J.C. [1974], Well separated clusters and optimal fuzzy partitions, Journal of Cybernetics, 4, 1, 95-104.
  40. Engelman L., Hartigan J.A. [1969], Percentage points of a test for clusters, Journal of the American Statistical Association, 64, 328, 1647-1648.
  41. Everitt B. [1978], Graphical techniques for multivariate data, Heinemann Educational Books Ltd. London.
  42. Everitt B.S. [1979], Unresolved problems in cluster analysis, Biometrics, 35, 1, Perspectives in Biometry, 169-181.
  43. Everitt B.S. [1993], Cluster Analysis, Edward Arnold, London.
  44. Everitt B.S., Landau S., Leese M., Stahl D. [2011], Cluster analysis, 5th edition, John Wiley & Sons, Ltd., Chichester.
  45. Falasconi M., Pardo M., Vezzoli M., Sberveglieri G. [2007], Cluster validation for electronic nose data, Sensors and Actuators B: Chemical, 125, 2, 596-606.
  46. Farris J.S. [1969], On the cophenetic correlation coefficient, Systematic Biology, 18, 3, 279-285.
  47. Florek K., Łukasiewicz J., Perkal J., Steinhaus H., Zubrzycki S. [1951], Taksonomia wrocławska, Przegląd Antropologiczny, 17, 193-210.
  48. Fowlkes E.B., Mallows C.L. [1983], A Method for Comparing two hierarchical clusterings, Journal of the American Statistical Association, 78, 383, 553-569.
  49. Friedman H.P., Rubin J. [1967], On some invariant criteria for grouping data, Journal of the American Statistical Association, 62, 320, 1159-1178.
  50. Gath I., Geva A.B. [1989], Unsupervised optimal fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 7, 773-781.
  51. Gatnar E., Walesiak M. [2004], Metody statystycznej analizy wielowymiarowej w badaniach marketingowych, AE Wrocław, 333-336.
  52. Goodman L.A., Kruskal W.H. [1954], Measures of association for cross classifications, Journal of the American Statistical Association, 49, 268, 732-764.
  53. Goodman L.A., Kruskal W.H. [1979], Measures of association for cross classifications, Sprinter- Verlag, New York, Heidelberg.
  54. Gordon A.D. [1987], A review of hierarchical classification, Journal of the Royal Statistical Society, Series A (General), 150, 2, 119-137.
  55. Gordon A.D. [1999], Classification, Chapman&Hall/CRC, Boca Raton.
  56. Gower J.C. [1966], Some distance properties of latent root and vector methods used in multivariate analysis, Biometrika, 53, 3/4, 325-338.
  57. Gower J.C. [1967], A comparison of some methods of cluster analysis, Biometrics, 23, 4, 623-638.
  58. Gower J.C. [1970], Classification and geology, Review of the International Statistical Institute, 38, 1, 35-41.
  59. Gurrutxaga I., Muguerza J., Arbelaitz O., P´erez J.M., Mart´ın J.I. [2011], Towards a standard methodology to evaluate internal cluster validity indices, Pattern Recognition Letters, 32, 3, 505- 515.
  60. Guttman L. [1968], A general nonmetric technique for finding the smallest coordinate space for a configuration of points, Psychometrika, 33, 2, 469-506.
  61. G¨unter S., Bunke H. [2003], Validation indices for graph clustering, Pattern Recognition Letters, 24, 8, 1107-1113.
  62. Halkidi M., Batistakis Y., Vazirgiannis M. [2001], On clustering validation techniques, Journal of Intelligent Information Systems, 17, 2-3, 107-145.
  63. Halkidi M., Gunopulos D., Vazirgiannis M., Kumar N., Domeniconi C. [2008], A clustering framework based on subjective and objective validity criteria, ACM Transactions on Knowledge Discovery from Data, 1, 4, 18, 18:1-18:25.
  64. Halkidi M., Vazirgiannis M. [2008], NPCIu: an approach for clustering spatially extended objects, Intelligent Data Analysis, 12, 6, 587-606.
  65. Handl J., Knowles J. [2004], Multiobjective clustering with automatic determination of the number of clusters, Technical Report TR- COMPSYSBIO-2004-02. UMIST, Manchester, UK.
  66. Hardy A. [1996], On the number of clusters, Computational Statistics & Data Analysis, 23, 1, 15, 83-96.
  67. Hartigan J.A. [1967], Representation of similarity matrices by tree, Journal of the American Statistical Association, 62, 320, 1140-1158.
  68. Hartigan J.A. [1975], Clustering Algorithms, New York: John Wiley.
  69. Hawkes R.K. [1971], The multivariate analysis of ordinal measures, The American Journal of Sociology, 76, 5, 908-926.
  70. Hennig C. [2008], Dissolution point and isolation robustness: Robustness criteria for general cluster analysis methods, Journal of multivariate analysis, 99, 6, 1154-1176.
  71. Hoffmann A., Motoda H., Scheffer T. (Eds.) [2005], Discovery Science, 8th International Conference, DS 2005, Singapore, October, Proceedings, Springer-Verlag Berlin Heidelberg, 302.
  72. Holgersson M. [1978], The limited value of cophenetic correlation as a clustering criterion, Pattern Recognition, 10, 4, 287-295.
  73. Holliday J.D., Hu C-Y., Willett P. [2002], Grouping of coefficients for the calculation of intermolecular similarity and dissimilarity using 2D fragment bit-strings, Combinatorial Chemistry & High Throughput Screening, 5, 2, 155-166.
  74. Hubert L.J. [1974], Approximate evaluation techniques for the single-link and complete-link hierarchical clustering procedures, Journal of the American Statistical Association, 69, 347, 698-704.
  75. Hubert L.J., Arabie P. [1985], Comparing partitions, Journal of Classification, 2, 1, 193-218.
  76. Hubert L.J., Levin J.R. [1976], Evaluating object set partitions: Free-sort analysis and some generalizations, Journal of Verbal Learning and Verbal Behavior, 15, 4, 459-470.
  77. Jaccard, P. [1908] Nouvelles recherch´es, sur la distribution florale. Bulletin de la Sociétévaudoise des Sciences Naturelles, 44, 223-270.
  78. Jain A.K., Dubes R.C. [1988], Algorithms for clustering data, Englewood Cliffs NJ: Prentice Hall, Chapter 4.
  79. Jajuga K. [1990], Statystyczna teoria rozpoznawania obrazow, PWN, Warszawa.
  80. Jambu M. [1978], Classification automatiqe pour l'analyse des donnees, tom I, Paris Dunod.
  81. Jardine C.J., Jardine N., Sibson R. [1967], The structure and construction of taxonomic hierarchies, Mathematical Biosciences, 1, 2, 173-179.
  82. Jardine N., Sibson R. [1968], The construction of hierarchic and non-hierarchic classification, The computer journal, 11, 2, 177-184.
  83. Johnson S.C. [1967], Hierarchical clustering schemes, Psychometrika, 32, 3, 241-254.
  84. Kalinowski S.T. [2009], How well to evolutionary trees describe genetic relationships among populations?, Heredity, 102, 5, 506-513.
  85. Kaufman L., Rousseeuw P.J. [1990], Finding groups in data: a introduction to cluster analysis, Wiley, New York.
  86. Kendall M.G. [1945], The treatment of ties in ranking problems, Biometrika, 33, 3, 239-251.
  87. Kim J. [1971], Predictive measures of ordinal association, The American Journal of Sociology, 76, 5, 891-907.
  88. Kruskal J.B. [1964], Nonmetric multidimensional scaling: a numerical method, Psychometrika 29, 2, 115-129.
  89. Kruskal J.B., Carroll J.D. [1969], Geometrical models and badness-of-fit functions. In Multivariate analysis (P.R.Krishnaiah, ed.), vol. II, (Proceedings of the 2. International Symposium on Multivariate Analysis held at Wright State Universaity, Dayton, Ohio, June 17-22, 1968), New York, Academic Press, 639-671.
  90. Krzanowski W.J., Lai Y.T. [1988], A criterion for determining the number of groups in a data set using sum-of-squares clustering, Biometrics, 44, 1, 23-34.
  91. Kulczynski S. [1927], Die Pflanzenassociationen der Pienenen, Bulletin International de L'Académie Polonaise des Sciences et des lettres, Classe des sciences mathématiques et naturelles, Série B, Supplément II, 2, 57-203.
  92. Kuramae E.E., Robert V., Echavarri-Erasun C., Boekhout T. [2007], Cophenetic correlation analysis as a strategy to select phylogenetically informative proteins: an example from the fungal kingdom, BMC Evolutionary Biology, 7, 134.
  93. Labatut V., Cherifi H. [2011], Accuracy Measures for the comparision of classifiers, ICIT, The 5th International Conference on Information Technology (artykuł wygłoszony na konferencji ICIT).
  94. Lago-Fern´andez L.F., Corbacho F. [2010], Normality-based validation for crisp clustering, Pattern Recognition, 43, 3, 782-795.
  95. Lam B.S.Y., Yan H. [2005], A new cluster validity index for data with merged clusters and different densities, IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC), 1, 798-803.
  96. Lam B.S.Y., Yan H. [2007], Assessment of microarray data clustering results based on a new geometrical index for cluster validity, Soft Computing, 11, 4, 341-348.
  97. Lance G.N., Williams W.T. [1966a], Computer programs for hierarchical polythetic classification ("Similarity analysis"), The Computer Journal, 9, 1, 60-64.
  98. Lance G.N., Williams W.T. [1966b], A generalized sorting strategy for computer classifications, Nature 212, 218 (8 October), Letters to Nature.
  99. Lance G.N., Williams W.T. [1967a], A general theory of classificatory sorting strategies, I. Hierarchical systems, The Computer Journal, 9, 4, 373-380.
  100. Lance G.N., Williams W.T. [1967b], A general theory of classificatory sorting strategies: II. Clustering systems, The Computer Journal, 10, 3, 271-277.
  101. Larson J.S., Bradlow E.T., Fader P.S. [2005], An exploratory look at supermarket shopping paths, International Journal of Research in Marketing, 22, 4, 395-414.
  102. Ling R.F. [1972], On the theory and consucion of k-clusters, The computer journal, 15, 4, 326-332.
  103. Mahalanobis P.C. [1936], On the generalised distance in statistics, Proceedings of the National Institute of Sciences of India, 2, 1, 49-55.
  104. Maimon O., Rokach L. (editors) [2005], The data mining and knowledge discovery handbook, Halkidi M., Vazirgiannis M.: Quality assessment approaches in data mining, Springer.
  105. Mali K., Mitra S. [2003], Clustering and its validation in a symbolic framework, Pattern Recognition Letters, 24, 14, 2367-2376.
  106. Marriott F.H.C. [1971], Practical problems in a method of cluster analysis, Biometrics, 27, 3, 501-514.
  107. McQuitty L.L. [1960], Hierarchical linkage analysis for the isolation of types, Educational and Psychological Measurement, 20, 1, 55-67.
  108. McQuitty L.L. [1966], Similarity analysis by reciprocal pairs for discrete and continuous data, Educational and Psychological Measurement, 26, 4, 825-831.
  109. McQuitty L.L. [1967], Expansion of similarity analysis by reciprocal pairs for discrete and continuous data, Educational and Psychological Measurement, 27, 2, 253-255.
  110. Meilă M. [2007], Comparing clusterings - an information based distance, Journal of multivariate analysis, 98, 5, 873-895.
  111. Mérigot B., Durbec J.P., Gaertner J.C. [2010], Ecology, 91, 6, 1850-1859.
  112. Migdał Najman K. [2007], Analiza podobieństwa wynikow grupowania uzyskanych w oparciu o metodę k-średnich dla wybranych metod ustalania optymalnej liczby skupień, Prace i Materiały WZ UG, 5, 601-610.
  113. Migdał Najman K. [2010], Zastosowanie samouczącej się sieci neuronowej typu SOM w analizie koszykowej, Taksonomia 17, Prace Naukowe UE we Wrocławiu, 305-315.
  114. Migdał Najman K. [2011], Propozycja hybrydowej metody grupowania opartej na sieciach samouczących, Referat wygłoszony na konferencji: SKAD 2011, Wągrowiec.
  115. Migdał Najman K., Najman K. [2005], Analityczne metody ustalania liczby skupień, Taksonomia 12, Prace Naukowe AE we Wrocławiu, 1076, 265-273.
  116. Migdał Najman K., Najman K. [2006a], Wykorzystanie indeksu silhouette do ustalania optymalnej liczby skupień, Wiadomości Statystyczne, 6, 1-10.
  117. Migdał Najman K., Najman K. [2006b], Analityczne metody ustalania skupień w rozmytych zbiorach danych, Taksonomia 13, Prace Naukowe AE we Wrocławiu, 1126, 159-167.
  118. Migdał Najman K., Najman K. [2007], Charakterystyka mierników oceny podobieństwa wyników podziałów, Prace i Materiały WZ UG, 3, 191-201.
  119. Migdał Najman K., Najman K. [2008], Wykorzystanie wskaźnika Dunn á do ustalania optymalnej liczby skupień, Wiadomości Statystyczne, 11, 26-34.
  120. Milligan G.W., Cooper M.C. [1985], An examination of procedures for determining the number of clusters in a data set, Psychometrika, 50, 2, 159-179.
  121. Milligan G.W., Cooper M.C. [1987], Methodology review: clustering methods, Applied psychological measurement, 11, 4, 329-354.
  122. Ming-Tso Chiang M., Mirkin B. [2010], Intelligent choice of the number of clusters in k-means clustering: an experimental study with different cluster spreads, Journal of classification, 27, 1, 3-40.
  123. Mirkin B. [1996], Mathematical classification and clustering, Nonconvex optimization and its applications, Kluwer Academic Publishers, Dordrecht.
  124. Mirkin B. [2011], Choosing the number of clusters, WIREs Data Mining and Knowledge Discovery, vol. 1, May/June, John Wiley&Sons, Inc., 252-259.
  125. Muhlenbach F., Lallich S. [2009], A new clustering algorithm based on regions of influence with self-detection of the best number of clusters, Data Mining, 2009, ICDM'09, Ninth IEEE International Conference on Data Mining, Miami, Florida, 884-889.
  126. Nowak E. [1985], Wskaźnik podobieństwa wyników podziału, Przegląd Statystyczny, 1, 41-48.
  127. Pal N.R., Biswas J. [1997], Cluster validation using graph theoretic concepts, Pattern Recognition, 30, 6, 848-849.
  128. Pitchandi P., Raju N. [2011], Improving the performance of multivariate Bernoulli model based documents clustering algorithms using transformation techniques, Journal of Computer Science, 7, 5, 762-769.
  129. Podani J. [1989], New combinatorial clustering methods, Vegetatio (Plant ecology), 81, 61-77.
  130. Rand W.M. [1971], Objective criteria for the evaluation of clustering methods, Journal of the American Statistical Association, 66, 336, 846-850.
  131. Ratkowsky D.A., Lance G.N. [1978], A criterion for determining the number of groups in a classification, Australian Computer Journal, 10, 3, 115-117.
  132. Raymond T.N., Jiawei H. [1994], Efficient and effective clustering methods for spatial data mining, Tech. Rep. TR-93-13, University of British Columbia, Vancouver, B.C., Canada.
  133. Rendon E., Abundez I.M., Gutierrez C., Diaz Zagal S., Arizmendi A., Quiroz E.M., Arzate E.H. [2011], A comparison of internal and external cluster validation indexes, in Applications of mathematics & computer engineering, Zemliak A., Mastorakis N. (editors), American Conference on Applied Mathematics (AMERICAN-MATH'11), 5TH WSEAS (World Scientific and ering Academy and Society) International Conference on Computer Engineering and Applications (CEA'11), Puerto Morelos, Mexico, Published by WSEAS Press, 158-163.
  134. Reulke R., Eckardt U., Flach B., Knauer U., Polthier K. (Eds.) [2006], Combinatorial Image Analysis, 11th International Workshop, IWCIA, Berlin, Germany, June, Springer-Verlag, 108-110.
  135. Rohlf F.J. [1970], Adaptive hierarchical clustering schemes, Systematic Biology, 19, 1, 58-82.
  136. Rohlf F.J. [1974], Methods of comparing classifications, Annual Review of Ecology and Systematics, 5, 1, 101-113.
  137. Rohlf F.J. [1982], Consensus Indices for Comparing Classifications, Mathematical Biosciences, 59.
  138. Rohlf F.J., Fisher D.R. [1968], Tests for hierarchical structure in random data sets, Systematic Biology, 17, 4, 407-412.
  139. Rousseeuw P.J. [1987], Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, Journal of of computational and applied mathematics, 20, 1, 53-65.
  140. Rousson V. [2007], The gamma coefficient revisited, Statistics & Probability Letters, 77, 17, 1696-1704.
  141. Rubinov A.M., Soukhorokova N.V., Ugon J. [2006], Classes and clusters in data analysis, European Journal of Operational Research, 173, 3, 849-865.
  142. Saitta S., Raphael B., Smith I.F.C. [2007], A bounded index for cluster validity, Machine Learning and Data Mining in Pattern Recognition, Heidelberg, Germany, Springer, 174-187.
  143. Saitta S., Raphael B., Smith I.F.C. [2008], A comprehensive validity index for clustering, Intelligent Data Analysis, 12, 6, 529-548.
  144. Sammon J.W. [1969], A nonlinear mapping for data structure analysis, IEEE Transactions on computers, C-18, 5, 401-409.
  145. Schepers J., Ceulemans E., Van Mechelen I. [2008], Selecting among multi-mode partitioning models of different complexities: a comparison of four model selection criteria, Journal of Classification, 25, 1, 67-85.
  146. Schultz J.V., Hubert L.J. [1979], A nonparametric test for the correspondence between two proximity matrices, Journal of Educational Statistics, 1, 1, 59-67.
  147. Scott A.J., Symons M.J. [1971], Clustering methods based on likelihood ratio criteria, Biometrics, 27, 2, 387-397.
  148. Seung-Seok C., Sung-Hyuk C., Tappert C.C. [2010], A survey of binary similarity and distance measures, Journal of Systemics, Cybernetics & Informatics, 8, 1, 43-48.
  149. Sneath P.H.A. [1957], The application of computers to taxonomy, Journal of General Microbiology, 17, 201-226.
  150. Sneath P.H.A., Sokal R.R. [1973], Numerical Taxonomy. The principles and practice of numerical classification, W.H. Freeman & Company, San Francisco, CA.
  151. Sokal R.R., Michener C.D. [1958], A statistical method for evaluating systematic relationships, The University of Kansas Scientific Bulletin 38, 1409-1438.
  152. Sokal R.R., Rohlf F.J. [1962], The comparison of dendrograms by objective methods, Taxon, 11,2, 33-40.
  153. Sokal R.R., Sneath P.H.A. [1963], Principles of numerical taxonomy, W.H. Freeman & Company, San Francisco, CA.
  154. Somers R.H. [1962a], A new asymmetric measure of association for ordinal variables, American Sociological Review, 27, 6, 799-811.
  155. Somers R.H. [1962b], A similarity between Goodman and Kruskal's tau and Kendall's tau, with a partial interpretation of the latter, Journal of the American Statistical Association, 57, 300, 804-812.
  156. Spath H. [1980], Cluster Analysis Algorithms, Ellis Horwood.
  157. Steinley D. [2006], K-means clustering: a half-century synthesis, British Journal of Mathematical and Statistical Psychology, 59, 1, 1-34.
  158. Sugar C.A., James G.M. [2003], Finding the number of clusters in a dataset: an information theoretic approach, Journal of the American Statistical Association, 98, 463, 750-763.
  159. Sun H., Wang S., Jiang Q. [2004], FCM-based model selection algorithms for determining the number of clusters, Pattern Recognition, 37, 10, 2027-2037.
  160. Szmigiel C. [1976], Wskaźnik zgodności kryteriow podziału, Przegląd Statystyczny, 4.
  161. Tanimoto T. [1958], An elementary mathematical theory of classification and prediction, Internal Report, IBM Corp.
  162. Theodoridis S., Koutroumbas K. [1999], Pattern recognition, Elsevier, Academic Press.
  163. Theodoridis S., Koutroumbas K. [2003], Pattern recognition, second edition, Elsevier, Academic Press.
  164. Thorndike R.L. [1953], Who belongs in the family?, Psychometrika, 18, 4, 267-276.
  165. Tibshirani R., Walther G., Hastie T. [2001], Estimating the number of clusters in a data set via the gap statistic, Journal of the Royal Statistical Society; Series B (Statistical Methodology), 63, 2, 411-423.
  166. Trakhtenbrot A., Kadmon R. [2006], Effectiveness of environmental cluster analysis in representing regional species diversity, Conservation Biology, 20, 4, 1087-1098.
  167. Walesiak M., Dudek A. [2006], Symulacyjna optymalizacja wyboru procedury klasyfikacyjnej dla danego typu danych - charakterystyka problemu, Zeszyty Naukowe Uniwersytetu Szczecińskiego nr 450, Prace Katedry Ekonometrii i Statystyki nr 17, 635-646.
  168. Wallace D.L. [1983], A method for comparing two hierarchical clustering: comment, Journal of the American Statistical Association, 78, 383, 569-576.
  169. Wanek D. [2003], Fuzzy spatial analysis techniques in a business GIS environment, ERSA 2003 Congress, University of Jyväskylä, Finland.
  170. Ward J.H. [1963], Hierarchical grouping to optimize an objective function, Journal of the American Statistical Association, 58, 301, 236-244.
  171. Wilson R., Spann M. [1990], A new approach to clustering, Pattern Recognition, 23, 12, 1413-1425.
  172. Wishart D. [1969], An algorithm for hierarchical classifications, Biometrics, 25, 1, 165-170.
  173. Xie X.L., Beni G. [1991], A validity measure for fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 8, 841-847.
  174. Xu L. [1997], Bayesian Ying-Yang machine, clustering and number of clusters, Pattern Recognition Letters, 18, 11-13, 1167-1178.
  175. Yeung K.Y., Ruzzo W.L. [2001], Details of the adjusted Rand index and clustering algorithms, suplement do artykułu: An empirical study on principal component analysis for clustering gene expression data, Bioinformatics, 17, 9, 763-774.
  176. Yue S.,Wang J.S.,Wu T.,Wang H. [2010], A new separation measure for improving the effectiveness of validity indices, Information Sciences, 180, 5, 748-764.
  177. Zhao Y., Karypis G. [2004], Empirical and theoretical comparisons of selected criterion functions for document clustering, Machine Learning, 55, 3, 311-331.
  178. Zhong S., Ghosh J. [2003], A comparative study of generative models for document clustering, The University of Texas at Austin, http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.8.4583&rep=rep1&type=pdf.
Cytowane przez
Pokaż
ISSN
0033-2372
Język
pol
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu