BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Dąbrowski Wojciech (Uniwersytet Warmińsko-Mazurski w Olsztynie), Bednarski Włodzimierz (Uniwersytet Warmińsko-Mazurski w Olsztynie)
Tytuł
Perspektywy zastosowania oleju z alg w produkcji biodiesla
Perspectives of the Use of Algal Oil for Biodiesel Production
Źródło
Nauki Inżynierskie i Technologie / Uniwersytet Ekonomiczny we Wrocławiu, 2012, nr 4 (7), s. 19-34, rys., tab., bibliogr. 64 poz.
Engineering Sciences and Technologies / Uniwersytet Ekonomiczny we Wrocławiu
Słowa kluczowe
Surowce odnawialne, Odnawialne źródła energii, Zasoby naturalne odnawialne
Renewable resources, Renewable energy sources, Renewable natural resources
Uwagi
streszcz., summ.
Abstrakt
Odnawialne źródła energii stanowią alternatywę dla wielu państw wobec wyczerpujących się zasobów ropy naftowej, wymogów ochrony środowiska oraz uniezależnienia się od zewnętrznych dostawców energii. Obecnie produkcja biodiesla pierwszej generacji zmaga się z problemem niewystarczającej ilości oleju roślinnego i ograniczonego areału upraw. Alternatywą mogą być olejodajne mikroorganizmy, których produktywność setki razy przekracza produktywność roślin. W opracowaniu przedstawiono potencjalne możliwości syntezy lipidów przez mikroalgi oraz wykorzystania oleju z alg w przemysłowej produkcji biodiesla. Zwrócono uwagę na unikalne cechy biochemiczne mikroalg, systemy produkcji biomasy oraz właściwości otrzymanego oleju i biodiesla.(abstrakt oryginalny)

Renewable energy sources are an alternative for many countries because of depletion of oil resources, requirements of environmental protection and independence from external energy suppliers. Currently, first-generation biodiesel production has been struggling with the problem of insufficient amount of vegetable oil and limited crop area. The promising alternative can be oleaginous microorganisms the productivity of which exceeds hundreds of times the productivity of plants. This paper presents the potential possibilities of the synthesis of lipids by microalgae and the use of algae oil in the industrial production of biodiesel. The attention is focused on the unique biochemical characteristics of microalgae, biomass production systems and the properties of obtained oil and biodiesel.(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Alabi A.O., Tampier M., Bibeau E., Microalgae Technologies and Processes for Biofuels/Bioenergy Production in British Columbia: Current Technology, Suitability and Barriers to Implementation, 2009, http://www.bcic.ca/images/stories/publications/lifesciences/microalgae_report.pdf (20.08.2012).
  2. Alzate M.E., Muñoz R., Rogalla F., Fdz-Polanco F., Pérez S.I., Biochemical methane potential of microalgae: Influence of substrate to inoculum ratio, biomass concentration and pretreatment, "Bioresource Technology" 2012, vol. 123, s. 488-494.
  3. Amaro H.M., Guedes A.C., Malcata F.X., Advances and perspectives in using microalgae to produce, "Biodiesel Applied Energy" 2011, vol. 88, s. 3402-3410.
  4. Atabani A.E., Silitonga A.S., Badruddin I.A., Mahlia T.M.I., Masjuki H.H., Mekhilef S., A comprehensive review on biodiesel as an alternative energy resource and its characteristics, "Renewable and Sustainable Energy Reviews" 2012, vol. 16, no. 4, s. 2070-2093.
  5. Balat M., Potential alternatives to edible oils for biodiesel production - a review of current work, "Energy Conversion and Management" 2011, vol. 52, no. 2, s. 1479-1492.
  6. Bilanovic D., Andargatchew A., Kroeger T., Shelef G., Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations-response surface methodology analysis, "Energy Conversion and Management" 2009, vol. 50, no. 2, s. 262-267.
  7. Borowitzka M.A., Commercial production of microalgae: Ponds, tanks, tubes and fermenters, "Journal of Biotechnology" 1999, vol. 70, no. 1-3, s. 313-321.
  8. Brennan L., Owende P., Biofuels from microalgae - a review of technologies for production, processing, and extractions of biofuels and co-products, "Renewable and Sustainable Energy Reviews" 2010, vol. 14, s. 557-577.
  9. Briassoulis D., Panagakis P., Chionidis M., Tzenos D., Lalos A., Tsinos C., Berberidis K., Jacobsen A., An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp., "Bioresource Technology" 2010, vol. 101, no. 17, s. 6768-6777.
  10. Bryan B.A., King D., Wang E., Biofuels agriculture: Landscape-scale trade-offs between fuel, economics, carbon, energy, food, and fiber, "Global Change Biology Bioenergy" 2010, vol. 2, no. 6, s. 330-345.
  11. Çelekli A., Yavuzatmaca M., Bozkurt H., Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes, "Bioresource Technology" 2009, vol. 100, no. 14, s. 3625-3629.
  12. Chen X., Goh Q.Y., Tan W., Hossain I., Chen W.N., Lau R., Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters, "Bioresource Technology" 2011, vol. 102, no. 10, s. 6005-6012.
  13. Chen Y.F., Wu Q., Production of biodiesel from algal biomass: Current perspectives and future, [w:] A. Pandey, C. Larroche, S. Ricke, C.-G. Dussap, E. Gnansounou (red.), Biofuels: Alternative Feedstocks and Conversion Processes, Elsevier, 2011 s. 399-409.
  14. Chen Y.-H., Huang B.-Y., Chiang T.-H., Tang T.-C., Fuel properties of microalgae (Chlorella protothecoides) oil biodiesel and its blends with petroleum diesel, "Fuel" 2012, vol. 94, s. 270-273.
  15. Chiu S.Y., Kao C.Y., Huang T.T., Lin C.J., Ong S.C., Chen C.D., Chang J.S., Lin C.S., Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures, "Bioresource Technology" 2011, vol. 102, no. 19, s. 9135-9142.
  16. Christi Y., Biodiesel from microalgae, "Biotechnology Advances" 2007, vol. 25, s. 294-306.
  17. Dean A.P., Sigee D.C, Estrada B., Pittman J.K., Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae, "Bioresource Technology" 2010, vol. 101, s. 4499-4507.
  18. De-Bashan L.E, Bashan Y., Immobilized microalgae for removing pollutants: Review of practical aspects, "Bioresource Technology" 2010, vol. 101, no. 6, s. 1611-1627.
  19. Delrue F., Setier P.A., Sahut C., Cournac L., Roubaud A., Peltier G., Froment A.K., An economic, sustainability, and energetic model of biodiesel production from microalga, "Bioresource Technology" 2012, vol. 111, s. 191-200.
  20. Demirbas A., Demirbas M.F., Importance of algal oil as a source of biodiesel, "Energy Conversion and Management" 2011, vol. 52, s. 163-170.
  21. Doucha J., Straka F., Lívansky K., Utilization of fl ue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor, "Journal of Applied Phycology" 2005, vol. 17, no. 5, s. 403-12.
  22. Dubois V., Breton S., Linder M., Fanni J., Parmentier M., Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential, "European Journal of Lipid Science and Technology" 2007, vol. 109, s. 710-732.
  23. Fazal M.A., Haseeb A.S.M.A., Masjuki H.H., Biodiesel feasibility study: An evaluation of material compatibility, performance, emission and engine durability, "Renewable and Sustainable Energy Reviews" 2011, vol. 15, no. 2, s. 1314-1324.
  24. Fedorov A.S., Kosourov S., Ghirardi M.L., Seibert M., Continuous hydrogen photoproduction by Chlamydomonas reinhardtii using a novel two-stage, sulfate-limited chemostat system, "Applied Biochemistry and Biotechnology" 2005, vol. 121-124, s. 403-412.
  25. Feng P., Deng Z., Fan L., Hu Z., Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations, "Journal of Bioscience and Bioengineering" 2012, vol. 114, no. 4, s. 405-410.
  26. Gołaszewski J., Renewables and environmental implications, "Environmental Biotechnology" 2009, vol. 5, no. 1, s. 11-24.
  27. Ho S.H., Chen W.M., Chang J.S., Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production, "Bioresource Technology" 2012, vol. 101, no. 22, s. 8725-8730.
  28. Jiang Y., Yoshida T., Quigg A., Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae, "Plant Physiology and Biochemistry" 2012, vol. 54, s. 70-77.
  29. Jiménez C., Cossío B.R., Niell X., Relationship between physico-chemical variables and productivity in open ponds for the production of Spirulina: A predictive model of algal yield, "Aquaculture" 2003, vol. 221, s. 331-345.
  30. Jorquera O., Kiperstok A., Sales E.A., Embiruçu M., Ghirardi M.L., Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors, "Bioresource Technology" 2010, vol. 101, no. 4, s. 1406-1413.
  31. Kapdan I.K., Kargi F., Bio-hydrogen production from waste materials, "Enzyme and Microbial Technology" 2006, vol. 38, s. 569-582.
  32. Lai J.Q., Hu Z.L., Wang P.W., Yang Z., Enzymatic production of microalgal biodiesel in ionic liquid [BMI][PF6], "Fuel" 2012, vol. 95, s. 329-333.
  33. Laza T., Bereczky Á., Basic fuel properties of rapeseed oil-higher alcohols blends, "Fuel" 2011, vol. 90, no. 2, s. 803-810.
  34. Li X., Xu H., Wu Q., Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors, "Biotechnology and Bioengineering" 2007, vol. 98, no. 4, s. 764-771.
  35. Liao S., Li F., Yao C.H., Bai F.W., The progress of ethanol production from microalgae, "Journal of Biotechnology" 2010, vol. 150, s. 570-580.
  36. Lv J.M., Cheng L.H., Xu X.H., Zhang L., Chen H.L., Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions, "Bioresource Technology" 2010, vol. 101, s. 6797-6804.
  37. Mata T.M., Martins A.A., Caetano N.S., Microalgae for biodiesel production and applications: A review, "Renewable and Sustainable Energy Reviews" 2010, vol. 14, s. 217-232.
  38. Nielsen P.M., Brask J., Fjerbaek L., Enzymatic biodiesel production: Technical and economical considerations, "European Journal of Lipid Science and Technology" 2008, vol. 110, no. 8, s. 692-700.
  39. Nishikawa K., Machida H., Yamakoshi Y., Ohtomo R., Saito K., Saito M., Tominaga N., Polyphosphate metabolism in an acidophilic alga Chlamydomonas acidophila KT-1 (Chlorophyta) under phosphate stress, "Plant Science" 2006, vol. 170, no. 2, s. 307-313.
  40. Olguin E.J., Phycoremediation: Key issues for cost-effective nutrient removal processes, "Biotechnology Advances" 2003, vol. 22, s. 81-91.
  41. Rajamani S., Siripornadulsil S., Falcao V., Torres M., Colepicolo P., Sayre R., Phycoremediation of heavy metals using transgenic microalgae, "Advances in Experimental Medicine and Biology" 2007, vol. 616, s. 99-109.
  42. Rao A.R., Dayananda C., Sarada R., Shamala T.R., Ravishankar G.A., Effect of salinity on growth of green alga Botryococcus braunii and its constituents, "Bioresource Technology" 2007, vol. 98, no. 3, s. 560-564.
  43. Ratledge C., Cohen Z., Microbial and algal oils: Do they have a future for biodiesel or as commodity oils?, "Lipid Technology" 2008, vol. 20, no. 7, s. 155-160.
  44. Ratledge C., Hopkins S., Lipids from microbial sources, [w]: F.D. Gunstone (red.), Modifying Lipids for Use in Food, Woodhead Publishing, 2006, s. 81-90.
  45. Rawat I., Kumar R.R., Mutanda T., Bux F., Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production, "Applied Energy" 2011, vol. 88, s. 3411-3424.
  46. Renaud S.M., Thinh L.V., Lambrinidis G., Parry D.L., Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures, "Aquaculture" 2002, vol. 211, no. 1-4, s. 195-214.
  47. Rodolfi L., Zittelli G.C., Bassi N., Padovani G., Biondi N., Bonini G., Tredici M.R., Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, "Biotechnology and Bioengineering" 2009, vol. 102, no. 1, s. 110-112.
  48. Rosenberg J.N., Mathias A., Korth K., Betenbaugh M.J., Oyler G.A., Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefi nery in Iowa: A technical appraisal and economic feasibility evaluation, "Biomass Bioenergy" 2011, vol. 35, s. 3865-3878.
  49. Santori G., Di Nicola G., Moglie M., Polonara F., A review analyzing the industrial biodiesel production practice starting from vegetable oil refining, "Applied Energy" 2012, vol. 92, s. 109-132.
  50. Scott S.A., Davey M.P., Dennis J.S., Horst I., Howe C.J., Lea-Smith D.J., Smith A.G., Biodiesel from algae: Challenges and prospects, "Current Opinion in Biotechnology" 2010, vol. 21, s. 277-286.
  51. Singh J., Gu S., Commercialization potential of microalgae for biofuels production, "Renewable and Sustainable Energy Reviews" 2010, vol. 14, s. 2596-2610.
  52. Singh R.N., Sharma S., Development of suitable photobioreactor for algae production, "Renewable and Sustainable Energy Reviews" 2012, vol. 16, no. 4, s. 2347-2353.
  53. Subramaniam R., Dufreche S., Zappi M., Bajpai R., Microbial lipids from renewable resources: Production and characterization, "Journal of Industrial Microbiology and Biotechnology" 2010, vol. 37, s. 1271-1287.
  54. Sydney E.B., da Silva T.E., Tokarski A., Novak A.C., De Carvalho J.C., Wojciechowski A.L., Larroche C., Soccol C.R., Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage, "Applied Energy" 2011, vol. 88, no. 10, s. 3291-3294.
  55. Szczęsna-Antczak M., Kubiak A., Antczak T., Bielecki S., Enzymatic biodiesel synthesis - key factors affecting efficiency of the process, "Renewable Energy" 2009, vol. 34, s. 1185-1194.
  56. Tabernero A., Martín del Valle E.M., Galán M.A., Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics, "Biochemical Engineering Journal" 2012, vol. 63, s. 104-11.
  57. Van Den Hende S., Vervaeren H., Boon N., Flue gas compounds and microalgae: (Bio-)chemical interactions leading to biotechnological opportunities, "Biotechnology Advances" 2012 [w druku].
  58. Vyas A.P., Verma J.L., Subrahmanyam N., A review on FAME processes, "Fuel" 2010, vol. 89, no. 1-9, s. 1-9.
  59. Wahlen B.D., Willis R.M., Seefeldt L.C., Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-culture, "Bioresource Technology" 2011, vol. 102, s. 2724-2730.
  60. Wang B., Li Y., Wu N., Lan C., CO2 bio-mitigation using microalgae, "Applied Microbiology and Biotechnology" 2008, vol. 79, no. 5, s. 707-718.
  61. Wang Z.T., Ullrich N., Joo S., Waffenschmidt S., Goodenough U., Algal lipid bodies: Stress induction, purifi cation and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii, "Eukaryot Cell" 2009, vol. 8, s. 1856-1868.
  62. World Energy Outlook, OECD/IEA, 2010, http://www.worldenergyoutlook.org/media/weo2010.pdf (20.08.2012).
  63. Xiong W., Li X., Xiang J., Wu Q., High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production, "Applied Microbiology and Biotechnology" 2008, vol. 78, no. 1, s. 29-36.
  64. Zeng X., Danquah M.K., Chen X.D., Lu Y., Microalgae bioengineering: From CO2 fixation to biofuel production, "Renewable and Sustainable Energy Reviews" 2011, vol. 15, no. 6, s. 3252-3260.
Cytowane przez
Pokaż
ISSN
2080-5985
Język
pol
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu