BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Galanc Tadeusz (University of Business in Wroclaw, Poland), Kołwzan Wiktor (General Tadeusz Kosciuszko Military Academy of Land Forces in Wroclaw, Poland), Pieronek Jerzy (Wrocław University of Technology)
Tytuł
A Quantitative Management Support Model of a Certain Production-Supply System - Boundary Conditions
Źródło
Operations Research and Decisions, 2012, vol. 22, no. 2, s. 5-13, bibliogr. 19 poz.
Słowa kluczowe
Równania różniczkowe, Zapasy
Differential equations, Inventories
Uwagi
summ.
Abstrakt
The paper is dedicated to constructing a method for the probabilistic analysis of the functioning a certain production-supply system. Previously a set of partial differential equations has been derived satisfied by the joint density function of the state of a three-dimensional process characterizing the functioning of the system. The operation of the system at the boundaries of the stock levels is analyzed. Two sets of differential equations have been derived, one describing the operation of the system when the stock level is zero and one describing the operation of the system when the stocks are full. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. BOROWSKA M., GALANC T., Probabilistyczny opis wąskiego gardła w pewnym systemie gospodarki zapasami, Badania Operacyjne i Decyzje, 1994, 4, 19-28.
  2. DOOB J.L., Stochastic Processes, Wiley, New York 1953.
  3. GALANC T., Związki między rozkładami bariery dolnej i parametrami zagregowanego wejścia pewnego systemu produkcyjno-zaopatrzeniowego, Przegląd Statystyczny, 1997, 44 (2), 235-239.
  4. GALANC T., Conditional probabilities of non-extreme states describing the bottleneck of a certain inventory system with an aggregated dynamic-parameter input, Modelling, Measurement and Control, 1998, 17 (1/2), 27-35.
  5. GALANC T., Związki między rozkładami prawdopodobieństwa maksymalnego poziomu zapasów a parametrami niezagregowanego procesu podaży produktu, Przegląd Statystyczny, 1998, 45 (2), 177-182.
  6. GALANC T., Matematyczna analiza działania pewnego systemu gromadzenia i wydawania zapasów o dynamicznych parametrach niezagregowanego procesu podaży produktu, Przegląd Statystyczny, 1998, 45 (2), 227-233.
  7. GALANC T., Conditional probabilities of low states describing the bottleneck of a certain inventory system with an aggregated dynamic-parameter input, System, 2004, 9 (1/2), 61-65.
  8. GALANC T., KOŁWZAN W., PIERONEK J., A quantitative management support model of a certain production-supply system in non-extreme states, Operations Research and Decisions, 2012 (1), 5-12.
  9. GICHMAN I.I., SKOROCHOD A.W., Wstęp do teorii procesów stochastycznych, PWN, Warszawa 1968.
  10. KRÓL M., LIANA M., Wpływ miejsca instalacji magazynu zbiornika w systemie transportowym na straty spowodowane deficytem lub przepełnieniem, Badania Operacyjne i Decyzje, 1997 (2), 41-48.
  11. KRÓL M., O wskaźnikach oceny niekorzystnych zjawisk w pracy pewnego systemu gospodarki zapasami, Badania Operacyjne i Decyzje, 1992 (4), 55-68.
  12. KURATOWSKI K., Rachunek różniczkowy i całkowy, PWN, Warszawa 2005.
  13. MERCIK J., GALANC T., Relations between probabilities of high states describing the bottleneck of certain inventory system and the dynamic parameters of an aggregated input, Systems: Journal of Transdisciplinary Systems Science, 2007, 12 (3), 3-7.
  14. MERCIK J., GALANC T., A mathematical description of a bottleneck in a certain inventory system in the case of an aggregated dynamic-parameter input, Systems: Journal of Transdisciplinary Systems Science, 2008, 13 (1/2), 12-20.
  15. RUDI N., KAPUR S., PYKE D.F., A two-location inventory model with transshipment and local decision making, Management Science, 2001, 47 (12), 1668-1680.
  16. SO K.C., Optimal buffer allocation strategy for minimizing work-in process inventory in unpacked production lines, IIE Transactions, 1997, 29, 81-88.
  17. ŚWIĄTEK J., GALANC T., Probabilities of an upper-limit barrier in the problem of the identification of barrier in the functioning of a certain inventory storage and issue system, Systems Science, 2008, 34 (3), 5-9.
  18. ŚWIĄTEK J., GALANC T., Identification of barrier in the functioning of a certain inventory storage and issue system, Systems Science, 2010, 36 (2), 11-14.
  19. WANG Y., COHEN M.A., ZHENG Y.S., A two-echelon repairable inventory system with stocking-center-dependent depot replenishment lead times, Management Science, 2000, 46 (11), 1441-1453.
Cytowane przez
Pokaż
ISSN
2081-8858
Język
eng
URI / DOI
http://dx.doi.org/10.5277/ord120202
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu