BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Mihalydeak Tamas (University of Debrecen, Hungary)
Tytuł
General Logical Systems of Functor-Argument Decomposition
Źródło
Cracow University of Economics Discussion Papers Series (CUE DP), 2011, nr 1(8), 13 s., bibliogr. 14 poz.
Słowa kluczowe
Logika, Analiza logiczna
Logic, Logical analysis
Uwagi
summ.
Abstrakt
We consider general logical systems of functor-argument decomposition. The defined notion of contexts as introduced here plays a crucial role in defining central logical notions such as satisfiability, consequence relations and validity. We outline the most important possibilities which in turn lead to different logical systems. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Church A.: A formulation of the simple theory of types. Journal of Symbolic Logic 5, (1940), 56-68.
  2. Dunn J.M.,G.M. Hardegree: Algebraic methods in philosophical logic, Vol. 41 of Oxford logic guide. New York: Oxford University Press. (2001).
  3. Frege G.: The Foundation of Arithmetic. A logic-mathematical enquiry into the concept of number. Oxford: Basil Blackwell, second revised edition, (1980). Translated by J.L. Austin, from Grundlagen der Arithmetik. Eine logischmatematisch Untersuchung Uber den Begriff der Zahl. Breslau: W. Koebner, (1884).
  4. Frege G.: Begri_sschrift, a formula language of pure thought modelled on that of arithmetic. In: M. Beaney (ed.): The Frege Reader. Oxford: Blackwell, (1997), pp. 47-78. Selections (Preface and part I). Translated by M. Beaney from Begriffsschrift, eine der arithmetischen nachgebildete Formelsprachen des reinen Denkens. Halle: L. Nebert, (1879).
  5. Hodges W.: A Context Principle. manuscript, (2001).
  6. Hodges W.: Formal features of compositionality. Journal of Logic, Language and Information 10, (2001), 7-28.
  7. Mihalydeak T.: On Tarskian models of general type-theoretical languages. In: C. Drossos, P.Peppas and C. Tsinakis (eds.): Proceedings of the 7th Panhellenic Logic Symposium. Patras: Patras University Press, (2009), 127-131.
  8. Ruzsa I.: Logikai szintaxis es szemantika (in Hungarian). Budapest: Akademiai Kiado, (1989).
  9. Ruzsa I.: Intensional logic revisited. Budapest, (1991).
  10. Ruzsa I.: Introduction to metalogic. Budapest: Aron Publishers, (1997).
  11. Szabo Z.G.: Compositionality as Supervenience. Linguistics and Philosophy 23, (2000), 475-505.
  12. Tarski A.: The concept of truth in formalized language. In: J. Corcoran (ed.): Logic, Semantics, Metamathematics. Indianapolis: Hackett Publishing, second edition, (1983), 152-278.
  13. Thomason R.H.: Type Theoretic Foundations of Context, Part 1: Contexts as Complex Type-Theoretic Objects. In: P. Bouquet, L. Serafini, P. Brezillon, M. Benerecetti, and F. Castellani (eds.): Modeling and Using Contexts: Proceedings of the Second International and Interdisciplinary Conference, CON-TEXT'99. Berlin: Springer-Verlag, (1999), 352-374.
  14. Thomason R.H.: Contextual Intensional Logic: Type-Theoretic and Dynamic Considerations. Manuscript, (2001).
Cytowane przez
Pokaż
ISSN
2081-3848
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu