BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Kondratiuk-Janyska Alina (University of Lodz, Poland), Kaluszka Marek (University of Lodz, Poland)
Tytuł
Bond Potrfolio Immunization in Arbitrage Free Models
Źródło
FindEcon Monograph Series : advances in financial market analysis, 2006, nr 1, s. 89-100, rys., tab., bibliogr. s. 100
Tytuł własny numeru
Financial markets : principles of modeling forecasting and decision-making
Słowa kluczowe
Teoria immunizacji portfelowej, Rynek obligacji, Teoria portfelowa Markowitza
Theory of portfolio immunization, Bond market, Markowitz portfolio theory
Abstrakt
The aim of this paper is to present immunization problem of a noncallable and default-free bond portfolio in a 3-period model of time referring to the Fong and Vasicek (1984), the Nawalkha and Chambers (1996), the Balbas and Ibanez (1998) studies among others. A fixed investment strategy is examined with respect to known optimization criteria: maxmin, Bayesian, Gamma-maxmin or completely new: Markowitz-type and others. It is expected to indicate which of them imply well known and widely applied duration strategy. However, in some models we found anomalies since, it is proved that, any strategy is optimal. The most crucial fact is that the Markowitz approach is free from such anomalies and, moreover, in some cases gives a duration strategy. (fragment of text)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Balbás A., Ibañez A. (1998), "When Can You Immunize a Bond Portfolio?", Journal of Banking and Finance, 22, 1571-1594.
  2. Bierwag G. O., Khang C. (1979), "An Immunization Strategy Is a Minimax Strategy", Journal of Finance, 34, 389-414.
  3. Fisher L., Weil R. L. (1971), "Coping with Risk of Interest Rate Fluctuations: Returns to Bondholders from Naive and Optimal Strategies", Journal of Business, 44, 408-431.
  4. Fong H. G., Vasicek O. A. (1984), "A Risk Minimizing Strategy for Portfolio Immunization", Journal of Finance, 39, 1541-1546.
  5. Jackowicz K. (1999), Zarządzanie ryzykiem stopy procentowej. Metoda duracji (Management of Interest Rate Risk. Duration Method), Warszawa: PWN.
  6. Kaluszka M., Kondratiuk-Janyska A. (2004a), "On Duration-Dispersion Strategies for Portfolio Immunization", Acta Universitatis Lodziensis, Folia Oeconomica, 177, 191-202.
  7. Kaluszka M., Kondratiuk-Janyska A. (2004b), "On Risk Minimizing Strategies for Default-Free Bond Portfolio Immunization", Applicationes Mathematicae, 31, 259-272.
  8. Macaulay F. (1938), Some Theoretical Problems Suggested by the Movements of Interest Rates, Bond Yields and Stock Prices in the United States since 1856, New York: National Bureau of Economic Research.
  9. Markowitz H. (1952), "Portfolio Selection", Journal of Finance, 7(1), 77-91.
  10. Nawalkha S. K., Chambers D. R. (1996), "An Improved Immunization Strategy; M-Absolute", Financial Analysts Journal, 52, 69-76.
  11. Nawalkha S. K., Chambers d. R. (eds.) (1999), Interest Rate Risk Measurement and Management, New York: Institutional Investor Inc.
  12. Prisman E. Z. (1986), "Immunization as a Maxmin Strategy", Journal of Banking and Finance, 10, 491-509.
  13. Redington F. M. (1952), "Review of the Principle of Life-Office Valuations", Journal of the Institute of Actuaries, 18, 286-340.
  14. Rządkowski G., Zaremba L. S. (2000), "New Formulas for Immunizing Durations, Journal of Derivatives, winter, 28-36.
  15. Samuelson P. A. (1945), "The Effects of Interest Rates Increases on the Banking System", American Economic Review, 35, 16-27.
Cytowane przez
Pokaż
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu