BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Larbani Moussa, Chen Yuh-Wen
Affinity Set and Its Applications
Multiple Criteria Decision Making / University of Economics in Katowice, 2008, vol. 3, s. 117-134, rys., tab., bibliogr. 13 poz.
Słowa kluczowe
Socjologia grup społecznych, Relacje międzyludzkie, Zachowania społeczne, Podejmowanie decyzji, Analiza regresji, Prognozowanie
Sociology of social groups, Interpersonal relations, Social behaviour, Decision making, Regression analysis, Forecasting
summ., Korespondencja z redakcją: numeracja wpisana za zgodą redakcji (wynika z ciągłości wydawniczej serii MCDM) - brak numeracji na stronie tytułowej
Affinity has a long history related to the social behavior of human, especially, the formation of social groups or social networks. Affinity has two meanings. The first is a natural liking for or attraction to a person, thing, idea, etc. The second defines affinity as a close relationship between people or things that have similar appearances, qualities, structures, properties, or features. Affinity here is simply defined as the distance/closeness between any two objects: the distance measurement could be geometric or abstract, or any type a decision maker prefers. A new forecasting method without historical memory, based on game theory and affinity set is originally proposed. The prediction performance of this new model is compared with the simple regression model for their performances on decision of buying in or selling out stocks in a dynamic market. Interestingly the qualitative model: affinity model performs better than the quantitative model: simple regression model. Possible affinity set applications are provided as well in order to encourage readers to develop affinity models for actual applications.(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Pełny tekst
  1. Chen Y.W., Larbani M.: Two-Person Zero-Sum Game Approach for Fuzzy Multiple Attribute Decision Making Problems. "Fuzzy Sets and Systems" 2006, No. 157, pp. 34-51.
  2. Cook W.D.: Distanced Based and ad hoc Consensus Models in Ordinal Preference Ranking. "European Journal of Operational Research" 2006, No. 172, pp. 369-385.
  3. Dubois D. and Prade H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York 1980.
  4. Engelking R.: Outline of General Topology (translated from Polish). North-Holland, Amsterdam 1968.
  5. Fonck P., Fodor J. and Roubens M.: An Application of Aggregation Procedure to the Definition of Measures of Similarity between Fuzzy Sets. "Fuzzy Sets and Systems" 1998, No. 97, pp. 67-74.
  6. Freedman J.L and Carlsmith D.D.: Sears: Social Psychology. Printice Hall, Engelwood Cliffs, NJ, 1974.
  7. Freeman L.C.: The Development of Social Network Analysis: A Study in the Sociology of Science. Empirical Press, Vancouver: 2004.
  8. GreTai: Securities Market,
  9. Nash J.: Non Cooperatives Games. "Annals. Maths" 1951, No. 54, pp. 286-295.
  10. Ovchinnikov S.: Similarity Relations, Fuzzy Partitions, and Fuzzy Orderings. "Fuzzy Sets and Systems" 1991, No. 40, pp. 107-126.
  11. Pawlak Z.: Rough Sets. "International Journal of Computer and Information Science" 1982, No. 11, pp. 341-356.
  12. Wasserman S.K.: Faust, Social Networks Analysis: Methods and Applications. Cambridge University Press, Cambridge 1994.
  13. Zadeh L.A.: Fuzzy sets. "Information and Control" 1965, No. 8, pp. 338-353.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu