BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Słowiński Roman, Greco Salvatore, Matarazzo Benedetto
Tytuł
Dominance-Based Rough Set Approach to Multiple Criteria Decision Support
Źródło
Multiple Criteria Decision Making / University of Economics in Katowice, 2007, vol. 2, s. 9-56, tab., bibliogr. 50 poz.
Słowa kluczowe
Systemy wspomagania decyzji, Podejmowanie decyzji, Podejmowanie decyzji w warunkach ryzyka, Teoria zbiorów przybliżonych, Zbiory przybliżone, Metoda Just in Time
Decision Support Systems (DSS), Decision making, Decision making under conditions of risk, Rough set theory, Rough sets, Just in Time method
Uwagi
summ., Korespondencja z redakcją: numeracja wpisana za zgodą redakcji (wynika z ciągłości wydawniczej serii MCDM) - brak numeracji na stronie tytułowej
Abstrakt
The utility of the rough set approach to multiple criteria decision support is related to the nature of both, the input preferential information available in decision analysis, and the output of the analysis. As to the input, the rough set approach requires a set of decision examples. This is convenient for the acquisition of preferential information from decision makers. Very often in multiple criteria decision support, this information has to be given in terms of preference model parameters, such as importance weights, substitution ratios and various thresholds. Producing such information requires a significant cognitive effort on the part of the decision maker. It is generally acknowledged that people often prefer to make exemplary decisions and cannot always explain them in terms of specific parameters. For this reason, the idea of inferring preference models from exemplary decisions provided by the decision maker is very attractive. Furthermore, the exemplary decisions may be inconsistent because of limited clear discrimination between values of particular criteria and because of hesitation on the part of the decision maker. These inconsistencies can convey important information that should be taken into account in the construction of the decision maker's preference model. The rough set approach is intended to deal with inconsistency and this is a major argument to support its application to multiple criteria decision analysis. The output of the analysis, i.e. the model of preferences in terms of "if..., then..." decision rules, is very convenient for decision support because it is intelligible and speaks the same language as the decision maker. The rough set approach adapted to multiple criteria decision support is called Dominance-based Rough Set Approach (DRSA). DRSA is concordant with the concept of granular computing, however, the granules are dominance cones in evaluation space and not bounded sets as it is the case in the basic rough set approach. It is also concordant with the paradigm of computing with words, as it exploits ordinal, and not necessarily cardinal, character of data. We present DRSA for multiple criteria classification, choice and ranking, as well as DRSA for decisions under risk. Finally, we compare DRSA with other decision support paradigms at an axiomatic level. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Dembczyński K., Greco S., Słowiński R.: Methodology of rough-set-based classification and sorting with hierarchical structure of attributesand criteria. "Control & Cybernetics" 2002, 31, pp. 891-920.
  2. Flinkman M., Michalowski W., Nilsson S., Słowiński R., Susmaga R., Wilk Sz.: Use of rough sets analysis to classify Siberian forest ecosystem according to net primary production of phytomass. "INFOR" 2000, 38, No. 3, pp. 145-161.
  3. Giove S. Greco S. Matarazzo B. Słowiński R.: Variable consistency monotonic decision trees. In: Rough Sets and Current Trends in Computing. Eds. J.J. Alpigini, J.F. Peters, A. Skowron, N. Zhong. LNAI 2475, Springer-Verlag, Berlin 2002, pp. 247-254.
  4. Greco, S., Inuiguchi, M., Słowiński, R.: A new proposal for fuzzy rough approximations and gradual decision rule representation. In: Transactions in Rough Sets II, LNCS 3135, Springer-Verlag, Berlin 2004, pp. 332-355.
  5. Greco S., Matarazzo B., Pappalardo N., Słowiński R.: Measuring expected effects of interventions based on decision rules. "Journal of Experimental and Applied Artificial Intelligence" 2005, 17, No.1-2, pp. 103-118.
  6. Greco S., Matarazzo B., Słowiński R.: A new rough set approach to evaluation of bankruptcy risk. In: Operational Tools in the Management of Financial Risk. Ed. C. Zopounidis. Kluwer, Dordrecht 1998, pp. 121-136.
  7. Greco S., Matarazzo, B., Słowiński, R.: Rough approximation of a preference relation by dominance relations. "European J. Operational Research" 1999, 117, pp. 63-83.
  8. Greco S., Matarazzo B., Słowiński R.: The use of rough sets and fuzzy sets in MCDM. Chapter 14. In: Advances in Multiple Criteria Decision Making. Eds. Gal T., Stewart T., Hanne T. Kluwer, Dordrecht 1999, pp. 14.1-14.59.
  9. Greco S., Matarazzo B., Słowiński R.: Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems. In: Decision Making: Recent Developments and Worldwide Applications. Eds. Zanakis S.H., Doukidis G., Zopounidis C. Kluwer, Dordrecht 2000, pp. 295-316.
  10. Greco S., Matarazzo B., Słowiński R.: Fuzzy extension of the rough set approach to multicriteria and multiattribute sorting. In: Preferences and Decisions under Incomplete Knowledge. Eds. Fodor J., De Baets B., Perny P. Physica-Verlag, Heidelberg, 2000, pp.131-151
  11. Greco S., Matarazzo B., Słowiński R.: Rough sets theory for multicriteria decision analysis. "European J. Operational Research" 2001, 129, pp. 1-47.
  12. Greco S., Matarazzo B., Słowiński R.: Assessment of a value of information using rough sets and fuzzy measures. In: Fuzzy Sets and their Applications. Eds. Chojcan J., Łęski J. Silesian University of Technology Press, Gliwice 2001, pp. 185-193.
  13. Greco S., Matarazzo B., Słowiński R.: Rough set approach to decisions under risk. In: Rough Sets and Current Trends in Computing. Eds. Ziarko W., Yao Y. LNAI 2005, Springer-Verlag, Berlin 2001, pp. 160-169.
  14. Greco S., Matarazzo B., Słowiński R.: Rough sets methodology for sorting problems in presence of multiple attributes and criteria. "European J. Operational Research" 2002, 138, pp 247-259.
  15. Greco S., Matarazzo B., Słowiński R.: Multicriteria classification. In: Handbook of Data Mining and Knowledge Discovery. Eds. Kloesgen W., Zytkow J. Oxford University Press, New York 2002, chapter 16.1.9, pp. 318-328.
  16. Greco S, Matarazzo B, Słowiński R: Preference representation by means of conjoint measurement & decision rule model. In: Aiding Decisions with Multiple Criteria-Essays in Honor of Bernard Roy. Eds. Bouyssou D., Jacquet-Lagrèze E., Perny P., Słowiński R., Vanderpooten D., Vincke P. Kluwer, Dordrecht, 2002, pp. 263-313
  17. Greco S., Matarazzo B., Słowiński R.: Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules. "European J. Operational Research" 2004, 158, pp. 271-292.
  18. Greco S., Matarazzo B., Słowiński R.: Dominance-Based Rough Set Approach to Knowledge Discovery (I) - General Perspective. Chapter 20. In: Zhong N., Liu J.: Intelligent Technologies for Information Analysis. Springer-Verlag, Berlin 2004, pp. 513- 552.
  19. Greco S., Matarazzo B., Słowiński R.: Dominance-Based Rough Set Approach to Knowledge Discovery (II) - Extensions and Applications. Chapter 21. In: Zhong N., Liu J. Intelligent Technologies for Information Analysis. Springer-Verlag, Berlin 2004, pp. 553-612.
  20. Greco, S., Matarazzo, B., Słowiński, R.: Decision rule approach. Chapter 13 [in]: J.Figueira, S.Greco and M.Ehrgott (eds.), Multiple Criteria Decision Analysis: State of the Art Surveys, Springer-Verlag, New York, 2005, pp. 507-562
  21. Greco S., Matarazzo B., Słowiński R., Stefanowski J.: Variable consistency model of dominance-based rough set approach. In: Ziarko W., Yao Y.: Rough Sets and Current Trends in Computing. LNAI 2005, Springer-Verlag, Berlin 2001, pp. 170-181
  22. Greco S., Matarazzo B., Słowiński R., Stefanowski J.: An algorithm for induction of decision rules consistent with dominance principle. In: Rough Sets & Current Trends in Computing. Eds. Ziarko W., Yao Y. LNAI 2005, Springer-Verlag, Berlin 2001, pp. 304- 313.
  23. Greco S., Matarazzo B., Słowiński R., Stefanowski J.: Mining association rules in preference- ordered data. In: Foundations of Intelligent Systems. Eds. Hacid M.-S., Ras Z.W., Zighed D.A., Kodratoff Y. LNAI 2366, Springer-Verlag, Berlin 2002, pp. 442-450.
  24. Greco S., Matarazzo B., Słowiński R., Tsoukias A.: Exploitation of a rough approximation of the outranking relation in multicriteria choice and ranking. [In]: Trends in Multicriteria Decision Making. Eds. Stewart T.J., van den Honert R.C. LNEMS 465, Springer- Verlag, Berlin 1998, pp. 45-60.
  25. Greco S., Pawlak Z., Słowiński R.: Can Bayesian confirmation measures be useful for rough set decision rules? "Engineering Applications of Artificial Intelligence" 2004, 17, No 4, pp. 345-361.
  26. Grzymala-Busse J.W.: A new version of the rule induction system LERS. "Fundamenta Informaticae" 1997, 31, pp. 27-39.
  27. Michalowski W., Rubin S., Słowiński R., Wilk Sz.: Mobile clinical support system for pediatric emergencies. "Journal of Decision Support Systems" 2003, 36, pp. 161-176.
  28. Michalski R.S., Bratko I. Kubat M.: Machine Learning and Data Mining - Methods and Applications. Eds. Wiley, New York 1998.
  29. Pawlak Z.: Rough sets. Int. J. Information & Computer Sciences, 1982, 11, pp. 341-356.
  30. Pawlak Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht 1991.
  31. Pawlak Z., Grzymala-Busse J.W., Słowiński R., Ziarko W.: Rough sets. "Communications of the ACM" 1995, 38, pp. 89-95.
  32. Pawlak Z., Słowiński K., Słowiński R.: Rough classification of patients after highly selective vagotomy for duodenal ulcer. "International Journal of Man-Machine Studies" 1986, 24, pp. 413-433.
  33. Pawlak Z., Słowiński R.: Rough set approach to multi-attribute decision analysis. "European J. Operational Research" 1994, 72, pp. 443-459.
  34. Polkowski L.: Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg 2002.
  35. Polkowski L., Skowron A.: Calculi of granules based on rough set theory: approximate distributed synthesis and granular semantics for computing with words. In: New Directions in Rough sets, Data Mining and Soft-Granular Computing. Eds. Zhong N., Skowron A., Ohsuga S. LNAI 1711, Springer-Verlag, Berlin 1999, pp. 20-28.
  36. Rossi L., Słowiński R., Susmaga R.: Rough set approach to evaluation of stormwater pollution. "International Journal of Environment and Pollution" 1999, 12, No 2/3, pp. 232-250.
  37. Roy B.: Multicriteria Methodology for Decision Aiding. Kluwer, Dordrecht 1996.
  38. Słowiński R.: Rough set learning of preferential attitude in multi-criteria decision making. In: Methodologies for Intelligent Systems. Eds. Komorowski J., Ras Z.W. LNAI 689, Springer-Verlag, Berlin 1993, pp. 642-651.
  39. Słowiński R.: Rough set approach to decision analysis. "AI Expert Magazine" 1995, 10, No 3, pp. 18-25.
  40. Słowiński R., Greco S., Matarazzo B.: Rough set analysis of preference-ordered data. In: Rough Sets and Current Trends in Computing. Eds. Alpigini J.J., Peters J.F., Skowron A., Zhong N. LNAI 2475, Springer-Verlag, Berlin 2002, pp. 44-59.
  41. Słowiński R., Greco S., Matarazzo B.: Mining decision-rule preference model from rough approximation of preference relation. In: Proc. 26th IEEE Annual Int. Conf. on Computer Software & Applications. Oxford 2002, pp. 1129-1134.
  42. Słowiński R., Greco S., Matarazzo B.: Axiomatization of utility, outranking and decision- rule preference models for multiple-criteria classification problems under partial inconsistency with the dominance principle. "Control and Cybernetics" 2002, 31, pp. 1005-1035.
  43. Słowiński R., Greco S.: Inducing robust decision rules from rough approximations of a preference relation. In: Artificial Intelligence and Soft Computing. Eds. Rutkowski L., Siekmann J., Tadeusiewicz R., Zadeh L.A. LNAI 3070, Springer-Verlag, Berlin 2004, pp. 118-132.
  44. Słowiński R., Greco S.: Measuring attractiveness of rules from the viewpoint of knowledge representation, prediction and efficiency of intervention. Keynote lecture. In: Proc. 3rd Atlantic Web Intelligence Conference, AWIC'05, Łódź, June 6-9, 2005.
  45. Słowiński R., Greco S., Matarazzo B.: Rough set based decision support. Chapter 16. In: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Eds. Burke E.K., Kendall G. Springer-Verlag, New York 2005, pp. 475-527.
  46. Słowiński R., Stefanowski J.: Rough set reasoning about uncertain data. "Fundamenta Informaticae" 1996, 27, pp. 229-243.
  47. Słowiński R., Vanderpooten D.: A generalised definition of rough approximations. "IEEE Transactions on Data and Knowledge Engineering" 2000, 12, pp. 331-336.
  48. Słowiński R., Zopounidis C.: Application of the rough set approach to evaluation of bankruptcy risk. "Intelligent Systems in Accounting, Finance & Management" 1995, 4, pp. 27-41.
  49. Stefanowski J., Vanderpooten D.: Induction of decision rules in classification and discovery- oriented perspectives. "International J. Intelligent Systems" 2001, 16, No 1, pp. 13-28.
  50. Wilk Sz., Słowiński R., Michalowski W., Greco S.: Supporting triage of children with abdominal pain in the emergency room. "European J. Operational Research" 2005, 160, No 3, pp. 696-709.
Cytowane przez
Pokaż
ISSN
2084-1531
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu