BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Trzaskalik Tadeusz (Uniwersytet Ekonomiczny w Katowicach), Sitarz Sebastian (Uniwersytet Śląski w Katowicach)
Dynamic Stochastic Problems of Profit Maximization with Partially Ordered Criteria Space
Multiple Criteria Decision Making / University of Economics in Katowice, 2009, vol. 4, s. 215-226, bibliogr. 18 poz.
Słowa kluczowe
Programowanie stochastyczne, Podejmowanie decyzji, Analiza wielowymiarowa
Stochastic programming, Decision making, Multi-dimensional analysis
summ., Korespondencja z redakcją: numeracja wpisana za zgodą redakcji (wynika z ciągłości wydawniczej serii MCDM) - brak numeracji na stronie tytułowej
Stochastic dynamic programming (DP) is a strong mathematical tool allowing modeling and solving many multiperiod decision processes. Multiple objective and dynamics characterize many sequential decision problems. In the paper we consider returns in partially ordered criteria set as a way of generalization of single criterion DP models to multiobjective case. In the present paper, on the basis of theoretical findings, described in our previous papers we consider exemplary stochastic DP profit maximization processes. Because of the lack of space we omit the general, formal description of such a process and concentrate on explanation, how the theory of DP models in partially ordered criteria space works. Both in level-volume and velocity-volume process we will consider formulated problems step by step, first as single criterion problems and next as bi- -criteria ones. Conclusions are presented in the last section. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
  1. Bellman R.E.: Dynamic programming. Princeton University Press, Princeton 1957.
  2. Henig M.I.: The Principle of Optimality in Dynamic Programming with Returns in Partially Ordered Sets. "Mathematics of Operations Research" 1985, 10, 3, pp. 462-470.
  3. Jonker J.-J., Piersma N., Van Den Poel D.: Joint Optimization of Customer Segmentation and Marketing Policy to Maximize Long-Term Profitability. "Expert Systems with Applications" 2004, 27, 2, pp. 159-168.
  4. Kamrad B., Siddique A.: Supply Contracts, Profit Sharing, Switching, and Reaction Options. "Management Science" 2004, 50, 1, pp. 64-82.
  5. Kao E.P.: A Preference Order Dynamic Program for Stochastic Traveling Salesman Problem. "Operations Research" 1978, 26, 6, pp. 1033-1045.
  6. Li D., Haimes Y.Y.: Multiobjective Dynamic Programming: The State of the Art. "Control-Theory and Advanced Technology" 1989, 5, 4, pp. 471-483.
  7. Mitten L.G.: Preference Order Dynamic Programming. "Management Science" 1974, 21, 1, pp. 43-46.
  8. Rolski T.: Order Relations in the Set of Probability Distributions and Their Applications in the Queuing Theory. "Dissertation Mathematicae" 132, PAN, Warszawa 1976.
  9. Sobel M.M.: Ordinal Dynamic Programming. "Management Science" 1975, 21, 9, pp. 967-975.
  10. Steinberg E., Parks M.S.: A Preference Order Dynamic Program for a Knapsack Problem with Stochastic Reward. "Operational Research Society Journal" 1979, 30, 2, pp. 141-147.
  11. Sboui S., Rabenasolo B., Jolly-Desodt A.-M., De Waele N.: A Profit-Maximization Dynamic Model for Supply Chain Planning. "Proceedings of the IEEE International Conference on Systems, Man and Cybernetics" 2002, 5, pp. 667- -672.
  12. Teunter R.H.: Determining Optimal Disassembly and Recovery Strategies. "Omega" 2006, 34, 6, pp. 533-537.
  13. Trzaskalik T.: Multiobjective Analysis in Dynamic Environment. The Karol Adamiecki University of Economics, Katowice 1998.
  14. Trzaskalik T.: Hierarchy Depending on State in Multiple Objective Dynamic Programming. "Operations Research and Decisions" 1997, 2, pp. 65-73.
  15. Trzaskalik T.: Hierarchy Depending on Value in Multiple Criteria Dynamic Programming. "Foundations of Computing and Decision Sciences" 1995, 20, 2, pp. 139-148.
  16. Trzaskalik T.: Multicriteria Discrete Dynamic Programming. Theory and Economic Applications. The Karol Adamiecki University of Economics, Katowice 1990.
  17. Trzaskalik T., Sitarz S.: Discrete Dynamic Programming with Outcomes in Random Variable Structures. "European Journal of Operational Research" 2007, 177, pp. 1535-1548.
  18. Trzaskalik T, Sitarz S.: Dynamic Discrete Programming with Partially Ordered Criteria Set. In: Multiple Objective and Goal Programming. Recent Developments. T. Trzaskalik, J. Michnik (eds). Phisica-Verlag, Heidelberg-New York 2002, pp. 186-195.
  19. Zhang W.F., Piplani R.: Application of Yield Management to Capacity Rationing. "EEE International Engineering Management Conference" 2004, 3, pp. 1229-1233.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu