BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Kostov Philip (University of Central Lancashire, United Kingdom), Arun Thankom (University of Central Lancashire, United Kingdom), Annim Samuel (University of Central Lancashire, United Kingdom)
Tytuł
Financial Services to the Unbanked: the Case of the Mzansi Intervention in South Africa
Źródło
Contemporary Economics, 2014, vol. 8, nr 2, s. 191-206, tab., wykr., bibliogr. 39 poz.
Słowa kluczowe
Usługi finansowe, Podejmowanie decyzji finansowych, Polityka finansowa państwa, Wyniki badań
Financial services, Decision making of finance, State financial policy, Research results
Uwagi
summ.
Kraj/Region
Republika Południowej Afryki (RPA)
Republic of South Africa
Abstrakt
Evidence supporting the weekend effect, also known as Monday Irrationality, has shown that conventional finance is unable to follow a rational behavior assumption. Many scholars have proposed a behavioral approach to explain this phenomenon; however, few studies have investigated this effect empirically. Interestingly, literature on weather patterns and the preliminary results of our study have identified a particular weather cycle that occurs on Mondays, when the temperature in Malaysia is higher compared with other days. Therefore, this paper aims to investigate the role of weather on investors' Monday irrationality. By analyzing the market index and size-based portfolio formation model from 1999 to 2010, this research study found that the weather influenced investors' mood, causing anomalous conditions in the market. Our findings conclude that the mood of investors plays an important role on investment decisions and the resulting Monday irrationality of investors. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Altman , M. (2012). Implications of behavioural economics for financial literacy and public policy. Journal of Behavioral and Experimental Economics, 41 (5), 677- 690.
  2. Anand, M., & Rosenberg, R. (April, 2008). Are We Overestimating Demand for Microloans? Washington, D.C.: The Consultative Group to Assist the Poor.
  3. Bankable Frontier Associaties. (2010). South African Financial Diaries and the Mzansi Initiative: Five Years Later. Retrieved from http://www.finmark.org.za/wp-content/uploads/r_findiaries.pdf.
  4. Bauer M., Chytilova J., & Morduch J. (2012). Behavioral Foundations of Microcredit: Experimental and Survey Evidence from Rural India. American Economic Review 102 (2), 1118-1139.
  5. Bauer, M. & Chytilová, J. (2009). The Impact of Education on the Subjective Discount Rate in Ugandan Villages (IZA Discussion Papers No. 4057). Institute for the Study of Labor.
  6. Beck T., Demirguc-Kunt, A. (2008). Access to Finance: An Unfinished Agenda. The World Bank Economic Review, 22 (3), 383-396.
  7. Beck, T., Demirgüç-Kunt, A., & Honohan, P. (2009). Access to Financial Services: Measurement, Impact, and Policies. The World Bank Research Observer, 24 (1), 119-145.
  8. Białowolski, P., Kuszewski, T., & Witkowski, B. (2012). Macroeconomic Forecasts in Models with Bayesian Averaging of Classical Estimates. Contemporary Economics, 6 (1), 60-69.
  9. Bondell, H. D. & Reich, B. J. (2008). Simultaneous Regression Shrinkage, Variable Selection and Supervised Clustering of Predictors with OSCAR. Biometrics 64 (1), 115-123.
  10. Bönte, W. & Filipiak, U. (2012). Financial literacy, information flows, and caste affiliation: Empirical evidence from India. Journal of Banking & Finance 36 (12), 3399-3414.
  11. Claessens, S. (2006). Access to Financial Services: A Review of the Issues and Public Policy Objectives. World Bank Research Observer, 21 (2), 207-240.
  12. Cole, S., Sampson, T., & Zia, B. (2011), Prices or Knowledge? What Drives Demand for Financial Services in Emerging Markets?. The Journal of Finance, 66 (6), 1933-1967.
  13. Daye, Z. J., Jeng, X. J. (2009). Shrinkage and model selection with correlated variables via weighted fusion. Computational Statistics and Data Analysis, 53 (4), 1284-1298.
  14. de Janvry, A., Cai, J., & Sadoulet, E. (2012). Social Networks and the Decision to Insure (Working Paper). Goldman School of Public Policy, University of California, Berkeley. Retrieved from http://are.berkeley.edu/~esadoulet/papers/SocialNetwork_081612.pdf.
  15. Dohmen, T., Falk, A., Huffman, D., & Sunde, U. (2010). Are Risk Aversion and Impatience Related to Cognitive Ability?, American Economic Review, 100 (3), 1238-1260.
  16. Dupas, P. & Robinson, J. (2013) Why Don't the Poor Save More? Evidence from Health Savings Experiments, American Economic Review, 103 (4), 1138-1171.
  17. Fafchamps, M., McKenzie, D., Quinn, S. R., & Woodruff, C. (2011). When is capital enough to get female microenterprises growing? Evidence from a randomized experiment in Ghana (Working Paper No. 17207). National Bureau of Economic Research.
  18. Fahrmeir, L., Kneib, T., & Konrath, S. (2010) Bayesian regularisation in structured additive regression: A unifying perspective on shrinkage, smoothing and predictor selection. Statistics and Computing, 20 (2), 203-219.
  19. Fan, J., & Li, R. (2001), Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96 (456), 1348-1360.
  20. Feigenberg, B., Field, E., & Pande, R. (2013). The Economic Returns to Social Interaction: Experimental Evidence from Microfinance (Working paper February 23). Harvard University. Retrieved from http://econ.duke.edu/uploads/media_items/feigenberg-field-pande-restud-02-13.original.pdf.
  21. Foss, N. J. (2012). Linking Ethics and Economic Growth: a Comment on Hunt. Contemporary Economics, 6 (3), 4-9.
  22. Griffin, J. and Brown, P. (2007). Bayesian adaptive lassos with non-convex penalization (CRiSM Paper No. 07-2v2). Centre for Research in Statistical Methodology. Retrieved from http://www2.warwick.ac.uk/fac/sci/statistics/crism/research/paper07-2/07-2wv2.pdf.
  23. Hans, C. (2010). Model uncertainty and variable selection in Bayesian lasso regression. Statistics and Computing, 20 (2), 221-229.
  24. Hans, C. (2009). Bayesian lasso regression. Biometrika, 96 (4), 835-845.
  25. Hastings, J. S., Madrian, B. C., & Skimmyhorn, W. L. (2013). Financial Literacy, Financial Education, and Economic Outcomes. Annual Review of Economics, 5, 347 -373.
  26. Hunt, S. D. (2012). Trust, Personal Moral Codes, and the Resource-Advantage Theory of Competition: Explaining Productivity, Economic Growth, and Wealth Creation. Contemporary Economics, 6 (2), 4-19.
  27. Ito, S., & Kono, H. (2010). Why is the Take-up of Microinsurance so low? Evidence from a Health Insurance Scheme in India, The Developing Economies 48 (1), 74-101.
  28. Karlan, D. & Morduch, J. (2010). Access to Finance, In D. Rodrik and M. Rosenzweig (Eds.), Handbook of Development Economics (Vol. 5) (pp. 4703- 4784). Amsterdam: North Holland.
  29. Lusardi, A., & Mitchell, O. S. (2013). The Economic Importance of Financial Literacy: Theory and Evidence (Working Paper No. 18952). National Bureau of Economic Research.
  30. McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (2nd ed.). London, UK: Chapman and Hall.
  31. Meagher, P., & Wilkinson, B. (2002). Filling the Gap in South Africa's Small and Micro Credit Market - An Analysis of Major Policy, Legal and Regulatory Issues (Working Paper No. 02/11). University of Maryland.
  32. Park, T., & Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103 (482), 681-686.
  33. Sun, W., Ibrahim, J. G., & Zou, F. (2010). Genome-wide Multiple Loci Mapping in Experimental Crosses by the Iterative Adaptive Penalized Regression. Genetics, 185 (1), 349-359.
  34. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society B, 58 (1), 267-288.
  35. Tutz, G., & Ulbricht, J. (2009). Penalized Regression with Correlation Based Penalty. Statistics and Computing, 19 (3), 239-253.
  36. Wang, H., Li, R., & Tsai, C. L. (2007). Regression coefficient and autoregressive order shrinkage and selection via lasso. Journal of Royal Statistical Society: Series B, 69 (1), 63-78.
  37. Yi, N., & Xu, S. (2008). Bayesian LASSO for Quantitative Trait Loci Mapping. Genetics, 179 (2), 1045- 1055.
  38. Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101 (476), 1418-1429.
  39. Zou, H. & Hastie, T. (2005). Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society: Series B, 67 (2), 301-320.
Cytowane przez
Pokaż
ISSN
2084-0845
Język
eng
URI / DOI
http://dx.doi.org/10.5709/ce.1897-9254.140
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu