BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Tabakow Marta (Uniwersytet Ekonomiczny we Wrocławiu), Korczak Jerzy (Uniwersytet Ekonomiczny we Wrocławiu), Franczyk Bogdan (Uniwersytet Ekonomiczny we Wrocławiu)
Tytuł
Big Data - definicje, wyzwania i technologie informatyczne
Big Data - Definitions, Challenges and Information Technologies
Źródło
Informatyka Ekonomiczna / Uniwersytet Ekonomiczny we Wrocławiu, 2014, nr 1 (31), s. 138-153, bibliogr. 31 poz.
Business Informatics / Uniwersytet Ekonomiczny we Wrocławiu
Słowa kluczowe
Analiza danych, Przetwarzanie danych, Komputerowy system przetwarzania danych, Big Data
Data analysis, Data processing, Data processing system, Big Data
Uwagi
streszcz., summ.
Abstrakt
Big Data jako kompleks zagadnień informatycznych stanowi jedno z najważniejszych wyzwań współczesnego świata cyfrowego. W obecnych czasach, przy ciągłym napływie dużej ilości informacji pochodzących z różnych źródeł, a zatem o różnej charakterystyce, wymaga się wprowadzenia nowych technik analizy danych oraz rozwiązań technologicznych. W szczególności Big Data wymaga stosowania równoległego przetwarzania danych oraz odejścia od klasycznego schematu przechowywania danych. Zatem w niniejszej pracy dokonano przeglądu podstawowych zagadnień związanych z tematyką Big Data. Przedstawiono różne definicje Big Data, problemy badawcze i technologiczne oraz wyzwania dotyczące wolumenu danych, ich zróżnicowania, redukcji wymiaru, jakości danych i możliwości wnioskowania. Wskazano także dalszy kierunek prac w zakresie rozpoznania możliwości Big Data w różnych obszarach zarządzania.(abstrakt oryginalny)

Big Data as a complex IT issues, is one of the most important challenges of the modern digital world. At the present time, the continuous inflow of a large amount of information from different sources, and thus with different characteristics, requires the introduction of new data analysis techniques and technology. In particular, Big Data requires the use of parallel processing and the departure from the classical scheme of data storage. Thus, in this paper we review the basic issues related to the theme of Big Data: different definitions of "Big Data" research and technological problems and challenges in terms of data volume, their diversity, the reduction of the dimension of data quality and inference capabilities. We also consider the future direction of work in the field of exploration of the possibilities of Big Data in various areas of management.(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Aggarwal C.C., Wang H., 2010, Graph Data Management and Mining: A Survey of Algorithms and Applications, \"Managing and Mining Graph Data\", Series: Advances in Database Systems, Vol. 40, Springer, s. 13-68.
  2. Bandler J., Grinder J., 1979, Frogs into Princes: Neuro Linguistic Programming, \"Real People Press\".
  3. Buhl H., Röglinger M., Moser F., Heidemann J., 2013, Big Data - Ein (ir-)relevanter Modebegriff für Wissenschaft und Praxis?, \"Wirtschaftsinformatik & Management\", Springer, s. 24-31.
  4. Boja C., Pocovnicu A., Batagan L., 2012, Distributed Parallel Architecture for \"Big Data\", \"Informatica Economica\", Bucharest, Romania, vol. 16, issue 2, s. 116-127.
  5. Bostock M., Ogievetsky V., Heer J., 2011, D3: Data-driven documents, \"IEEE Transaction on Visualization & Computer Graphics\", IEEE, vol. 17, issue 12, s. 2301-2309.
  6. Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2011-2016, 2012, http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index. html, 30.11.2013.
  7. Chang C., Kayed M., Girgis M.R., Shaalan K.F., 2006, A survey of web information extraction systems. \"IEEE Transactions on Knowledge and Data Engineering\", IEEE, vol. 18, issue 10, s. 1411-1428.
  8. Changqing J., Yu L., Wenming Q., Awada U., Keqiu L., 2012, Big Data Processing in Cloud Computing Environments, 12th International Symposium on Pervasive Systems, Algorithms and Networks (ISPAN), San Marcos, IEEE, s. 17-23.
  9. Cox M., Ellsworth D., Managing Big Data for Scientific Visualization, 1997, ACM SIGGRAPH \'97 Course #4, Exploring Gigabyte Datasets in Real-Time: Algorithms, Data Management, and Time-Critical Design, Los Angeles.
  10. Doug L., 2001, Data Management: Controlling Data Volume, Velocity, and Variety, \"Application Delivery Strategies\", META Group (currently with Gartner).
  11. Zikopoulos P., Eaton C., deRoos D., Deutsch T., Lapis G., 2012, Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, McGraw Hill, USA.
  12. Fan W., Bifet A., 2012, Mining big data: current status, and forecast to the future, \"ACM SIGKDD Explorations Newsletter\", SIGKDD Explorations, ACM, New York, USA, vol. 14, issue 2, s. 1-5.
  13. He B., Patel M., Zhang Z., Chang K.C.C., 2007, Accessing the deep web, \"Communications of the ACM\", ACM, New York, USA, vol. 50, issue 5, s. 94-101.
  14. Jadeja Y., Modi K., 2012, Cloud computing - concepts, architecture and challenges, 2012 International Conference on Computing, Electronics and Electrical Technologies (ICCEET), IEEE, Kumaracoil, India.
  15. Jinchuan C., Yueguo C., Xiaoyong D., Cuiping L., Jiaheng L., Suyun Z., Xuan Z., 2013, Big data challenge: a data management perspective, \"Frontiers of Computer Science\", SP Higher Education Press, vol. 7, issue 2, s. 157-164.
  16. Katal A., Wazid M., Goudar R.H., 2013, Big Data: Issues, Challenges, Tools and Good Practices, 2013 Sixth International Conference on Contemporary Computing (IC3), IEEE, Noida, s. 404-409.
  17. Keim D., Kohlhammer J., Ellis G., Mansmann F., 2010, Mastering The Information Age - Solving Problems with Visual Analytics, Eurographics Association, Germany.
  18. Korolov M., 2013, 15 most powerful Big Data companies, Network World.
  19. Labrinidis A., Jagadish H., 2012, Challenges and opportunities with big data, Proceedings of the VLDB Endowment, VLDB Endowment, vol. 5, issue 12, s. 2032-2033.
  20. Leishi Z., Stoffel A., Behrisch M., Mittelstadt S., Schreck T., Pompl R., Weber S., Last H., Keim D., 2012, Visual analytics for the big data era - A comparative review of state-of-the-art commercial systems, 2012 IEEE Conference on Visual Analytics Science and Technology, IEEE, Seattle, WA, s. 173-182.
  21. McKinsey Global Institute, 2011, Big data: The next frontier for innovation, competition, and productivity, http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier _for_innovation, 30.11.2013.
  22. Mozafari B., Zeng K., D\'antoni L., Zaniolo C., 2013, High-Performance Complex Event Processing over Hierarchical Data, ACM Transactions on Database Systems (TODS), ACM, New York, USA, vol. 38, issue 4.
  23. Rhodes R., 2013, Finding Big Data\'s Sweet Spot, IBM Systems Magazine, http://www.ibmsystems mag.com/, 2.12.2013.
  24. Sakr S., Liu A. Fayoumi A.G., 2013, The Family of MapReduce and Large-Scale Data Processing System, ACM Computing Surveys (CSUR), ACM, New York, USA, vol. 46, issue 1.
  25. Shvachko K., Kuang H., Radia S., Chansler R., 2010, The Hadoop Distributed File System, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), IEEE, Incline Village, NV, s. 1-10.
  26. Thomas J.J., Cook A.K., 2006, Visual Analytics Agenda, \"IEEE Computer Graphics and Applications\", IEEE, s. 10-13.
  27. Venner J., 2009, Pro Hadoop, Apress.
  28. Wei L., Xiaofeng M., Weiyi M., 2010, ViDE: A Vision-Based Approach for Deep Web Data Extraction, IEEE Transactions on Knowledge and Data Engineering, IEEE, s. 447-460.
  29. Wong P.C., Thomas J., 2004, Visual analytics, IEEE Computer Graphics and Applications, IEEE, s. 20-21.
  30. World Economic Forum, Big Data, Big Impact: New Possibilities for International Development, Geneva 2012, http://www.weforum.org/, 3.12.2013.
  31. Zikopoulos P., deRoos D., Parasuraman K., Deutsch T., Corrigan D., Giles J., 2013, Harness the Power of Big Data: The IBM Big Data Platform, McGraw-Hill, USA.
Cytowane przez
Pokaż
ISSN
1507-3858
Język
pol
URI / DOI
http://dx.doi.org/10.15611/ie.2014.1.12
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu