BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Parsapoor Mahboobeh (Halmstad University, Szwecja), Bilstrup Urban (Halmstad University, Szwecja), Svensson Bertil (Halmstad University, Szwecja)
A Brain Emotional Learning-based Prediction Model For the Prediction of Geomagnetic Storms
Annals of Computer Science and Information Systems, 2014, vol. 2, s. 35-42, rys., bibliogr. 33 poz.
Słowa kluczowe
Geofizyka, Geografia, Badania naukowe
Geophysics, Geography, Scientific research
This study suggests a new data-driven model for the prediction of geomagnetic storm. The model is known as the Brain Emotional Learning-based Prediction Model (BELPM). BELPM consists of four main subsystems; the connection between these subsystems has been mimicked by the corresponding regions of the emotional system. The functions of these subsystems are explained using adaptive networks. The learning algorithm of BELPM is defined using the steepest descent (SD) and the least square estimator (LSE). BELPM is employed to predict geomagnetic storms using two geomagnetic indices, Auroral Electrojet (AE) Index and Disturbance Time (Dst) Index. To evaluate the performance of BELPM, the obtained results have been compared with ANFIS, WKNN. The results verify that BELPM has the capability to achieve a reasonable accuracy for both the short-term and the long-term geomagnetic storms prediction.(original abstract)
Pełny tekst
  1. Babaie T., Karimizandi R., Lucas C., "Learning based brain emotional intelligence as a new aspect for development of an alarm system,'' J. Soft Computing., vol. 9, issue 9, pp.857-873, 2008. DOI:10.1007/s00500-007-0258-8
  2. Bala R., Reiff P., Improvements in short-term forecasting of geomagnetic activity, Space Weather, 10, S06001,2012, doi:10.1029/2012SW000779.
  3. Gazzaniga M.S., Ivry R.B., Mangun G.R., Steven M.S., Gognative Nerosc in The Biology of the Mind. W.W.Norton&Company, New York, 3rd ed., 2009.
  4. Gleisner H., Lundstedt H., Wintoft P.,, Predicting geomagnetic storms from solar wind data using time delay neural networks, Ann. Geophys., 14, 679, 1996.
  5. Golipour A., Lucas C., Shamirzadi D., Purposeful prediction Of Space Weather Phenomena by Simulated Emotional Learning. Modeling Journal, 24,2004. 65-72.
  6. Haykin S., Neural Networks: A Comperhensive Foundation.Upper Saddle River, NJ:Prentice Hall, 2nd ed., 1999.
  8. Jankovièová D., Dolinský P., Valach F., Vörös Z., Neural network-based nonlinear prediction of magnetic storms, J. Atmos. Sol. Terr. Phys., 64, 651-656,2002. DOI:10.1016/s1364-6826(02)00025-1
  9. Kugblenu S., Taguchi S., Okuzawa T., Prediction of the geomagnetic storm associated Dst index using an artificial NN algorithm, Earth PlanetSci., 51, 307-313, 1999.
  10. Ledoux J.E., The emotional brain: the mysterious underpinnings of emotional life, Simon & Schuster,NY ,1998.
  11. Lotfi E., Akbarzadeh-Totonchi M.R., "Adaptive brain emotional decayed learning for online prediction of geomagnetic activity indices", ;presented at Neurocomputing, 2014, pp.188-196.DOI: 10.1016/j.neucom.2013.02.040
  12. Lucas C., Shahmirzadi D., Sheikholeslami N., "Introducing BELBIC: brain emotional learning based intelligent controller,'' J. INTELL. AUTOM. SOFT. COMPUT., vol. 10, no. 1, pp. 11-22, 2004. DOI: 10.1080/10798587.2004
  13. Mehrabian A.R., Lucas C., Roshanian J.,"Aerospace Launch Vehicle Control: An Intelligent Adaptive Approach", J. Aerosp. Sci. Technol., vol. 10, pp. 149-155, 2006. DOI: 10.1016/j.ast.2005.11.002
  14. Milasi R.M., Lucas C., Araabi B.N., "Intelligent Modeling and Control of Washing Machines Using LLNF Modeling and Modified BELBIC," in Proc. Int. Conf. Control and Automation., pp.812-817, 2005. DOI: 10.1109/ICCA.2005.1528234
  15. Mirmomeni M., Lucas C., "Analyzing the variation of lyapunov exponents of solar and geomagnetic activity indices during coronal mass ejections," Space Weather, vol. 7, p. S07002, July 2009. DOI: 10.1029/2008SW000454
  16. Mirmomeni M., Lucas C., Analyzing the variation of embedding dimension of solar and geomagnetic activity indices during geomagnetic storm time, Earth Planets Space, 61, 237-247, 2009., doi:10.1186/BF03352904.
  17. Mirmomeni M., Shafiee M., Lucas C., Araabi B.N., Introducing a new learning method for fuzzy descriptor systems with the aid of spectral analysis to forecast solar activity, J. Atmos. Sol.-Terr. Phys., 68,2061-2074, 2006. DOI:10.1016/j.jastp.2006.07.001.
  18. Moren J., Balkenius C.,"A computational model of emotional learning in the amygdala,''in From Animals to Animats, MIT, Cambridge, 2000.
  19. Nelles O., Nonlinear System Identification: From classicical Approches to Neural Networks and Fuzzy Models. Berlin, Germany: Springer-Verlag, 2001.
  20. Parsapoor M., Bilstrup U., "An emotional learning-inspired ensemble classifier (ELiEC)," Computer Science and Information Systems (FedCSIS), 2013 Federated Conference on, vol., no., pp.137,141, 8-11 Sept. 2013.
  21. Parsapoor M., Bilstrup U., "Brain Emotional Learning Based Fuzzy Inference System (BELFIS) for Solar Activity Forecasting," in Proc. IEEE Int. Conf. ICTAI 2012, 2012. DOI:10.1109/ICTAI.2012.78
  22. Parsapoor M., Bilstrup U., "Brain Emotional Learning Based Fuzzy Inference System (Modified using Radial Basis Function)," 8th IEEE International Joint Conference for Digital InformationManagement, 2013. DOI: 10.1109/ICDIM.2013.6693994.
  23. Parsapoor M., Bilstrup U., "Neuro-fuzzy models, BELRFS and LoLiMoT, for prediction of chaotic time series," in Proc. IEEE Int. Conf. INISTA., pp.1-5, 2012.doi: 10.1109/INISTA.2012.6247025
  24. Parsapoor M., Bilstrup U., "Chaotic Time Series Prediction Using Brain Emotional Learning Based Recurrent Fuzzy System (BELRFS)," in International Journal of Reasoning-based Intelligent Systems, 2013. DOI: 10.1504/IJRIS.2013.057273.
  25. Parsapoor M., Brain Emotional Learning-Inspired Models. Licentiate dissertation, Halmstad: Halmstad University Press, 2014.
  26. Parsapoor M., Lucas C., Setayeshi S., "Reinforcement _recurrent fuzzy rule based system based on brain emotional learning structure to predict the complexity dynamic system," in Proc. IEEE Int. Conf. ICDIM, pp.25-32, 2008. Doi: 10.1109/ICDIM.2008.4746712
  27. Parsapoor M., Prediction the price of Virtual Supply Chain Management with using emotional methods. M.S. thesis, Dept. Computer. Eng., Science and research Branch, IAU.,
  28. Sharifi J., Araabi B.N., Lucas C., Multi_step prediction of Dst index using singular spectrum analysis and locally linear neurofuzzy modeling, Earth Planets Space, 2006, vol. 58, pp. 331-341. doi: 10.1186/BF03351929.
  29. Sheikholeslami N., Shahmirzadi D., Semsar E., Lucas C., "Applying Brain Emotional Learning Algorithm for Multivariable Control of HVAC Systems,", J. Intell. Fuzzy. Syst. Vol. 16, pp. 1-12, 2005.
  30. Tobiska W.K., Knipp D., Burke W.J., Bouwer D., Bailey J., Odstrcil D., Hagan M.P., Gannon J., Bowman B.R. (2013), The Anemomilos prediction methodology for Dst, Space Weather, 11, 490-508, doi:10.1002/swe.20094.
  31. Voros Z., Jankovicova D., "Neural network prediction of geomagnetic activity: a method using local Holder exponents," Nonlinear Processes in Geophysics, no. 9, pp. 425 - 433, 2002.
  32. Xinlin Li L., Luo B.,Temerin M., "Prediction of the Dst, AL, AU Indices Using Solar Wind Parameters,'' Geophysical Research Abstracts, Vol. 15, EGU2013-3645, 2013. doi:10.1029/2006JA011918
  33. Yazdani1 A.M., Buyamin1 S., Mahmoudzadeh2 S., Ibrahim1 Z., Rahmat1 M.F., "Brain emotional learning based intelligent controller for stepper motor trajectory tracking," J. IJPS., vol. 7, no. 15, pp. 2364-2386, 2012. DOI: 10.5897/IJPS11.1590
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu