BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Cioch Monika (Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie), Tuszyński Tadeusz (Uniwersytet Rzeszowski)
Tytuł
Biologiczne metody odkwaszania win gronowych
Biological Deacidification Methods of Wines
Źródło
Nauki Inżynierskie i Technologie / Uniwersytet Ekonomiczny we Wrocławiu, 2014, nr 1 (12), s. 9-23, rys., tab., bibliogr. 58 poz.
Engineering Sciences and Technologies / Uniwersytet Ekonomiczny we Wrocławiu
Słowa kluczowe
Technologia, Przemysł rolno-spożywczy, Przetwórstwo rolno-spożywcze
Technology, Agri-food industry, Agricultural and food processing
Uwagi
streszcz., summ.
Abstrakt
Równowaga między zawartością cukrów i kwasów stanowi najbardziej istotny czynnik w produkcji wysokiej jakości wina. L-jabłczany i L-winiany odgrywają kluczową rolę w procesie winifikacji, wpływając na cechy organoleptyczne napoju oraz jego stabilność fizyczną, biochemiczną i mikrobiologiczną. Odkwaszanie moszczu gronowego i wina jest często niezbędne w jego produkcji, szczególnie w rejonach o niesprzyjających warunkach klimatycznych, do których można zaliczyć również Polskę. Fermentacja jabłkowo-mlekowa indukowana przez bakterie kwasu mlekowego (LAB) skutecznie redukuje kwasowość, jednak przyczynia się do zmiany charakteru wina oraz tworzenia niepożądanych związków, takich jak aminy biogenne czy karbaminian etylu. Alternatywą dla niej jest odkwaszanie z udziałem dobranych szczepów drożdży. Ze względu na ich różnorodność i zmienność genetyczną oraz skuteczność redukcji kwasu jabłkowego w moszczach gronowych i winach, na szczególną uwagę zasługują te szczepy, które zapewniają równocześnie prawidłowy proces fermentacji i dojrzewania. Odkwaszanie win gronowych z udziałem drożdży daje możliwość nie tylko obniżenia kwasowości, ale również uzyskania pożądanych komponentów smaku i aromatu, kształtując jakość sensoryczną finalnego produktu.(abstrakt oryginalny)

The balance between sugar and acid content is the most important factor in the production of high quality wines. L-malate and L-tartrate play a crucial role in the winemaking process, influence the organoleptic properties and biochemical, physical and microbial stability of wine. The deacidification of grape must and wine is often an essential part of its production, especially in areas with unfavorable climatic conditions, which also include Poland. Malolactic fermentation induced by lactic acid bacteria (LAB) effectively reduces the wine acidity, but it contributes to change in character and to the production of undesired compounds, such as biogenic amines and ethyl carbamate. The deacidification of wine using yeast strains is an alternative for it. Taking into consideration the genetic diversity and variability of yeast cultures characterized by different reduction effectiveness of malic acid in grape musts and wines, the strains that allow biodegradation of L-malic acid with properly conducted fermentation and maturation process deserve special attention. The deacidification of wines with yeast makes it possible not only to reduce the acidity, but also to get the desired flavor and aroma components, forming the sensory quality of the final product.(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Bibliografia
Pokaż
  1. Ansanay V., Dequin S., Camarasa C., Schaeffer V., Grivet J., Blondin B., Salmon J., Barre P., Malolactic fermentation by engineered Saccharomyces cerevisiae as compared with engineered Schizosaccharomyces pombe, \"Yeast\" 1996, 12, s. 215-225.
  2. Bartowsky E.J, Borneman A.R., Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine, \"Applied Microbiology and Biotechnology\" 2011, 6.
  3. Bonin S., Zastosowanie mikroorganizmów immobilizowanych w winiarstwie, Żywność. Nauka. Technologia. Jakość 2006, 3, s. 5-15.
  4. Bucher M., Brander K.A., Sbicego S., Mandel T., Kuhlemeier C., Aerobic fermentation in tobacco pollen, \"Plant Molecular Biology\" 1995, 28, s. 739-750.
  5. Capello M.S., Stefani D., Grieco F., Logrieco A., Zapparoli G., Genotyping by Amplified Fragment Length Pomymorphism and malate metabolism performances of indigenous Oenococcus oeni strains isolated from Primitivo wine, \"International Journal of Microbiology\" 2008, 127, s. 241-245.
  6. Capone D.L., van Leeuwen K., Pardon K.H., Daniel M.A., Elsey G.A., Coulter A.D., Sefton M.A., Idenfitication and analysis of 2-chloro-6-methylphenol, 2,6-dichlorophenol and indole: causes of taints and off-flavours in wines, Australian \"Journal of Grape and Wine Research\" 2010, 16, s. 210-217.
  7. Capozzi V., Russo P., Beneduce L., Weidmann S., Grieco F., Guzzo J., Spano G., Technological properties of Oenococcus oeni strains isolated from typical southern Italian wines, \"Letters in Applied Microbiology\" 2010, 50, s. 327-334.
  8. Charoenchai C., Fleet G., Henscke P.A., Effects of temperature, pH and sugar concentration on the growth rates and cell biomass of wine yeast, \"American Journal of Enology and Viniculture 1998, 49, s. 283-288.
  9. Coloretti F., Zambonelli C., Castellari L., Tini V., Rainieri S., The Effect of DL-Malic Acid on the Metabolism of L-Malic Acid during Wine Alcoholic Fermentation, \"Food Technology and Biotechnology\" 2002, 40, s. 317-320.
  10. Coucheney F., Desroche N., Bou M., Tourdot-Marechal R., Dulau L., Guzzo J., A new approach for selection of Oenococcus oeni strains in order to produce malolactic starters, \"International Journal of Food Microbiology\" 2005, 105, s. 463-470.
  11. Delcourt F., Taillandier P., Vidal F., Strehaiano P., Influence of pH, malic acid and glucose concentrations on malic acid consumption by Saccharomyces cerevisiae, \"Applied Microbiology and Biotechnology\" 1995, 43, s. 321-324.
  12. Du Toit M., Engelbrecht L., Lerm E., Krieger-Weber S., Lactobacillus: the next generation of malolactic fermentation starter cultures-an overview, \"Food and Bioprocess Technology\" 2011, 4, s. 876-906.
  13. Fillion L., Ageorges A., Pacaud S., Coutos-Thévenot P., Lemoine R., Romieu C., Derlot S., American Society of Plant Physologists, \"Plant Physiology\" 1999, 120, s. 1083-1093.
  14. Fleet G.H., Wine Microbiology and Biotechnology, Harwood, Academic Publishers, Switzerland 1994.
  15. Fleet G.H., Wine yeasts for the future, \"FEMS Yeast Research\" 2008, 8, s. 979-995.
  16. Gao C., Fleet G.H., Degradation of malic and tartaric acids by high density cell suspensions of wine yeasts, \"Food Microbiology\" 1995, 12, s. 65-71.
  17. Grimaldi A., McLean H., Jiranek V., Identification and partial characterization of glycosidic activities of commercial strains of the lactic acid bacterium, Oenococcus oeni, \"American Journal of Enology and Viticulture\" 2000, 51, s. 362-369.
  18. Guzzo J., Jobin M.P., Divis C., Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation, \"FEMS Microbiology Letters\" 1998, 60, s. 43-47.
  19. Hornsey I., The Chemistry and Biology of Winemaking, The Royal Society of Chemistry, Cambridge 2007.
  20. Izquierdo Cañas P.M., Garcia Romero E., Gómez Alonso S., Palop Herreros M.L.L., Changes in the aromatic composition of Tempranillo wines during spontaneous malolactic fermentation, \"Journal of Food Composition and Analysis\" 2008, 21, s. 724-730.
  21. Jackson R.S., Wine Science, Principals and Applications, Academic Press 2008.
  22. Jitjaroen W., Bouphun T., Panjai L., The potential of malolactic fermentation on organic acids degradation in Mao (Antidesma Thwaitesanum Müell.) wine production, \"International Journal of Bioscience, Biochemistry and Bioinformatics\" 2013, 3, s. 368- 371.
  23. Kennes C., Veiga M.C., Dubourguier H.C., Touzel J.P., Albagnac G., Naveau H., Nyns E.J., Trophic relationships between Saccharomyces cerevisiae and Lactobacillus plantarum and their metabolism of glucose and citrate, \"Applied and Environmental Microbiology\" 1991, 57, s. 1046-1051.
  24. Kosseva M., Beschkov V., Kennedy J.F., Lloyd L.L., Malolactic fermentation in Chardonnay wine by immobilised Lactobacillus casei cells, \"Process Biochemistry\" 1998, 33, s. 793-797.
  25. Kučerová J., Široky J., Study of changes organic acids in red wines during malolactic fermentation, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 2011, 5, s. 145-150.
  26. Kunicka-Styczyńska A., In the search for novel wine yeast with deacidification activity, \"Fermentation Technology\" 2012, 1.
  27. Kunicka A., Szopa J.S., Otrzymywanie międzyrodzajowych hybrydów drożdży Saccharomyces cerevisiae i Schizosaccharomyces pombe na drodze fuzji protoplastów, \"Biotechnologia\" 1998, 1, s. 167-177.
  28. Lόpez I., Lόpez R., Santamaria P., Torres C., Ruiz-Larrea F., Performance of malolactic fermentation by inoculation of selected Lactobacillus plantarum and Oenococcus oeni strains isolated from Rioja red wines, \"Vitis\" 2008, 47, s. 123-129.
  29. Malherbe S., Tredoux A.G.J., Nieuwoudt H.H., du Toit M., Comparative metabolic profiling to investigate the contribution of O.oeni MLF starter cultures to red wine composition, \"Journal of Industrial Microbiology and Biotechnology\" 2012, 39, s. 477-494.
  30. Margalit Y., Concepts in Wine Chemistry, Wine Appreciation Guilg Ltd. San Francisco, USA 1997.
  31. Moreno-Arribas M.V., Polo M.C., Wine Chemistry and Biochemistry, Springer Science+Bussines Media 2009.
  32. Or E., Baybik J., Sadka A., Ogrodovitch A., Fermentative metabolism in grape berries: isolation and characterization of pyruvate decarboxylase cDNA and analysis of its expression throughout berry development, \"Plant Science\" 2000, 156, s. 151-158.
  33. Osborne J.P., Edwards C.G., Bacteria in winemaking, \"Advances in Food and Nutrition Research\" 2005, 50, s. 139-177.
  34. Pratelli R., Lacombe B., Torregrosa L., Gaymard F., Romieu C., Thibaud J-B., Sentenac H., A grapevine gene encoding a guard cell K+ channel displays developmental regulation in the grapevine berry, \"Plant Physiology\" 2002, 128, s. 564-577.
  35. Pretorius I.S., Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking, \"Yeast\" 2000, 16, s. 675-729.
  36. Rainieri S., Zambonelli C., Giucidi P., Castellari L., Characterisation of thermotolerant Saccharomyces cerevisiae hybrids, \"Biotechnology Letters\" 1998, 20, s. 543-547.
  37. Redzepovic S., Orlic S., Majdak A., Kozina B., Volschenk H., Viljoen-Bloom M., Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation, \"International Journal of Food Microbiology\" 2003, 83, s. 49-61.
  38. Riberéau-Gayon P., Dubourdieu D., Donèche B., Lonvaud A., Handbook of Enology Volume 1. The Microbiology of Wine and Vinifications, 2nd Edition, John Wiley & Sons, Ltd 2006.
  39. Riberéau-Gayon P., Glories Y., Maujean A., Dubourdieu D., Handbook of Enology Volume 2. The Chemistry of Wine Stabilization and Treatments, John Wiley & Sons, Ltd 2006.
  40. Rodriquez S.B., Thornton R.J., Factors influencing the utilization of L-malate by yeasts, FEMS Microbiology Letters 1990, 72, s. 17-22.
  41. Rosi I., Nannelli F., Giovani G., Biogenic amine production by Oenococcus oeni during malolactic fermentation of wines obtained using different strains of Saccharomyces cerevisiae, \"Food Science and Technology\" 2009, 42, s. 525-530.
  42. Saayman M., Viljoen-Bloom M., The biochemistry of malic acid metabolism by wine yeasts - a review, \"South African Journal for Enology and Viticulture\" 2006, 2, s. 113- 122.
  43. Satora P., Tuszyński T., Biodiversity of Yeasts During Plum Węgierka Zwykła Spontaneous Fermentation, \"Food Technology and Biotechnology\" 2005, 3, s. 277-282.
  44. Satora P., Tuszyński T., The influence of Saccharomyces cerevisiae, Kloeckera apiculata and Candida pulcherrima mixed cultures on the selected alcohols formation during model fermentation, The 12th European Congress on Biotechnology, Copenhagen, Denmark, August 2006.
  45. Soyer Y., Koca N., Karadeniz F., Organic acid profile of Turkish white grapes and grape juices, \"Journal of Food Composition and Analysis\" 2003, 16, s. 629-636.
  46. Sroka P., Tuszyński T., The use of immobilized yeasts in mead wort fermentation, \"LWT Food Sciences and Technology\" 2007.
  47. Subden R.E., Krizus A., Osothsilp C., Viljoen M., Van Vuren H.J.J., Mutational analysis of malate pathways in Schizosaccharomyces pombe, \"Food Research International\" 1998, 31, s. 37-42.
  48. Swiegers J. H., Bartowsky E.J., Henschke P.A., Pretorius I.S., Yeast and bacterial modulation of wine aroma and flavor, \"Australian Journal of Grape and Wine Research\" 2005, 11, s. 139-173.
  49. Terrier N., Sauvage F.X., Ageorges A., Romieu C., Changes in acidity and in proton transport at the tonoplast of grape berries during development, \"Planta\" 2001, 213, s. 20-28.
  50. Thornton R.J., Rodriquez S.B., Deacidification of red and white wines by a mutant of Schizosaccharomyces malidevorans under commercial winemaking conditions, \"Food Microbiology\" 1996, 13, s. 475-482.
  51. Tul-Krzyszczuk A., Kołakowska-Paszkiewicz A., Konkurencyjność na rynku wina w Polsce, Stowarzyszenie Ekonomistów Rolnictwa i Agrobiznesu, Roczniki Naukowe 2008, t. X, z. 4.
  52. Winterhalter P., Sefton M.A., Williams P.J., Volatile C13 norisoprenoid compounds in Riesling wine are generated from multiple precursors, \"Journal of Agriculture and Food Chemistry\" 1990, 41, s. 277-283.
  53. Vivela-Moura A., Schuller D., Mendes-Faia A., Corte-Real M. Reduction of volatile acidity of wines by selected yeast strains, \"Applied Microbiology and Biotechnology\" 2008, 80, s. 881-890.
  54. Volschenk H., Viljoen-Bloom M.H., Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation, \"International Journal of Food Microbiology\" 2006, 83, s. 49-61.
  55. Volschenk H., Viljoen M., Grobler J., Petzold B., Bauer F., Subden R.E., Young R.A., Lonvaud A., Denayrolles M., van Vuuren H.J.J., Engineering pathways for malate degradation in Saccharomyces cerevisiae, \"Nature Biotechnology\" 1997, 15, s. 253-257.
  56. Volschenk H., Viljoen-Bloom M., Subden R.E., van Vuuren H.J.J., Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae, \"Yeast\" 2011, 18, s. 63-970.
  57. Volschenk H., van Vuuren H.J.J., Viljoen-Bloom M., Malic Acid in Wine: Origin, Function and Metabolism during Vinification, \"South African Journal for Enology and Viticulture\" 2006, 27, s. 123-136.
  58. Zoecklein B.W., Fugelsang K.C., Gumo B.H., Nury F.S., Wine Analysis and Production, Chapmann & Hall, New York 1995.
Cytowane przez
Pokaż
ISSN
2080-5985
Język
pol
URI / DOI
http://dx.doi.org/10.15611/nit.2014.1.01
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu