BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Owczarczuk Marcin (Warsaw School of Economics, Poland)
Tytuł
Support vector machines with two support vectors
Źródło
Department of Applied Econometrics Working Papers, 2009, nr 2, 9 s., bibliogr. 2 poz.
Słowa kluczowe
Benchmarking, Algorytmy, Modele liniowe
Benchmarking, Algorithms, Linear models
Uwagi
summ.
Abstrakt
Abstract: In this article we present a new class of support vector machines for binary classification task. Our support vector machines are constructed using only two support vectors and have very low Vapnik-Chervonenkis dimension, so they generalize well. Geometrically, our approach is based on searching of a proper pair of observations from different classes of explained variable. Once this pair is found the discriminant hyperplane becomes orthogonal to the line connecting these observations. This method deals well with data sets with large number of features and small number of observations like gene expression data. We illustrate the performance of our classification method using gene expression data and show that it is superior to other classifiers especially to diagonal linear discriminant analysis and k-nearest neighbor which achieved the lowest error rate in the previous studies of tumor classification.(original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Dudoit S., Fridlyand J., Speed T. P. (2002). Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. Journal of the American Statistical Association. 97, 77-87.
  2. Vapnik V. N. (1989). Statistical Learning Theory. Wiley-Interscience, New York
Cytowane przez
Pokaż
ISSN
2084-4573
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu