BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Wiśniowski Arkadiusz
Tytuł
Bayesian analysis of growth using stochastic frontier model
Źródło
Department of Applied Econometrics Working Papers, 2008, nr 1, 35 s., tab., bibliogr. 47 poz.
Słowa kluczowe
Stochastyczny model graniczny, Wzrost gospodarczy, Analiza stochastyczna, Produkcja, Zmiany technologiczne, Wnioskowanie bayesowskie
Stochastic frontier model, Economic growth, Stochastic analysis, Production, Technological change, Bayesian inference
Uwagi
summ.
Abstrakt
We employ Bayesian approach to the analysis of economic growth in Poland. The results of estimation of a stochastic frontier model applied to production function of Polish voivodships in 2000 - 2004 are presented. Stochastic frontier approach allows to decompose growth into technological change, input change and efficiency change. In order to compute the posterior characteristics of the growth components we employ the Gibbs MCMC sampler. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Aigner D., Lovell C.A.K., Schmidt P. [1977], Formulation and Estimation of Stochastic Frontier Production Function Models, "Journal of Econometrics", vol. 6.
  2. Barro R.J., Sala-i-Martin X. [1999], Economic Growth, MIT Press, Cambridge, MA Bernardo J.M. [1979], Reference Posterior Distribution for Bayesian Inference, "Journal of the Royal Statistical Society - Series B", vol. 41
  3. Bernardo J.M., Smith A.F.M. [1994], Bayesian Theory, Wiley.
  4. Chichester Box G.E.P., Tiao G.C. [1973], Bayesian Inference in Statistical Analysis, Addison Wesley, Reading
  5. Casella G., George E. [1992], Explaining the Gibbs Sampler, "The American Statistician", vol. 46
  6. Casella G., Robert Ch. [1999], Monte Carlo Statistical Methods, Springer Verlag Chow G.C.: Ekonometria, PWN 1995
  7. Cowles M.K., Carlin B.P. [1996], Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review, "Journal of the American Statistical Association" 91, 883-904
  8. Cowles M.K., Rosenthal J.S. [1998], A simulation approach to convergence rates for Markov chain Monte Carlo algorithms, "Statistics and Computing" 8, 115-124.
  9. Cowles M.K, Roberts G.O., Rosenthal J.S. [1999], Possible biases induced by MCMC convergence diagnostics, "Journal of Statistical Computation and Simulation 64, 87-104.
  10. Eurostat database [2004], Gross domestic product indicators - ESA95, http://epp.eurostat.ec.europa.eu/, 01 September 2007.
  11. Fernandez C., Osiewalski J., Steel M.F.J. [1997], On the Use of Panel Data in Stochastic Frontier Models with Improper Priors, "Journal of Econometrics", vol.79.
  12. Finetti B. de [1974-1975], Theory of Probability, Wiley, Chichester.
  13. Fishman G.S. [1999], Monte Carlo: Concepts, Algorithms and Applications, Springer, New York.
  14. Geweke J. [1992], Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments, w: Bayesian Statistics Ą, red.: J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M'. Smith, Oxford University Press, Oxford.
  15. Geweke J. [1995], Baesian Comparison of Econometric Models.
  16. Geyer Ch. [1992], Practical Markov chain Monte Carlo, Statistical Science, Vol. 7, No. 4, 473-483.
  17. Ekonometria, [1996], red.: Gruszczyński M., Podgórska M., Warsaw School of Economics.
  18. Gujarati D.N. [2004], Basic Econometrics, McGraw-Hill Companies.
  19. Hammersley J.M., Handscomb D.C. [1964], Monte Carlo Methods, Methuen, London.
  20. Jaynes E.T. [2003], Probability Theory: The Logic of Science, Cambridge University Press, Cambridge.
  21. Jeffreys H. [1967], Theory of Probability, Oxford University Press, Oxford.
  22. Koop G. [2003] Bayesian Econometrics, Wiley.
  23. Koop G., Osiewalski J., Steel M.F.J. [1999], The Components of Output Growth: A Stochastic Frontier Analysis, "Oxford Bulletin of Economics and Statistics", vol. 61.
  24. Koop G., Osiewalski J., Steel M.F.J. [2000], Modeling the Sources of Output Growth in a Panel of Countries, "Journal of Business & Economic Statistics", vol. 18, No. 3.
  25. Marzec J., Osiewalski J. [1998], Bayesian Analysis of Cost Efficiency with an Application to Bank Branches, in: Global Trends and Changes in- European Banking, red. Miklaszewska E., Jagiellonian University, Cracow.
  26. Marzec J. [2001], Graniczna funkcja kosztu dla oddziałów banku: wyniki estymacji bayesowskiej, in: Metody ilościowe w naukach ekonomicznych, red. Welfe A., Warsaw School of Economics.
  27. Marzec J. [2002], Krótkookresowa analiza technologii i efektywności kosztowej oddziałów banku - praca jako czynnik stały, in: Metody ilościowe w naukach ekonomicznych, red. Welfe A., Warsaw School of Economics.
  28. Meeusen W., Broeck J. van den [1977], Efficiency Estimation from, Cobb-Douglas Production Functions with Composed Error, "International Economic Review", vol. 8.
  29. Osiewalski J. [2001] Ekonometria bayesowska w zastosowaniach, Academy of Economics.
  30. Osiewalski J., Osiewalska A. [1998-1999], Stochastyczna graniczna funkcja kosztu dla polskich bibliotek akademickich, Folia Oeconomica Cracoviensia, vol. 41-42.
  31. Osiewalski J., Steel M.F.J. [1998], Num erica I Tools for the Bayesian Analysis of Stochastic Frontier Models, "Journal of Productivity Analysis", vol. 10.
  32. Pipień M. [1998], Całkowania numeryczne w analizie bayesowskiej: Monte Carlo z funkcją ważności, "Przegląd Statystyczny", t. 46.
  33. Poirier D.J. [1995], Intermediate Statistics and Econometrics (A Comparative Approach), MIT Press, Cambridge, MA.
  34. Poirier D.J., Tobias J.L. [2004], Bayesian Econometrics, Working Paper, Iowa State University, Department of Economics.
  35. Polska 2005. Raport o stanie przemysłu, [2005], pod kierunkiem: Piechota J., Górski A., Piątkowska A., Grabarczyk A., Ministry of Economy and Labour, Warsaw.
  36. Ritter Ch., Simar L. [1997], Pitfalls of Normal-Gamma Stochastic Frontier Models, "Jornal of Productivity Analysis", Vol. 8.
  37. Robert Ch.P. [1995], Simulation of truncated normal variables, "Statistics and Computing" 5, 121-125.
  38. Roberts G.O., Rosenthal J.S. [2004], General State Space Markov Chains and MCMC Algorithms, Probability Surveys, vol. 1.
  39. Rocznik Statystyczny Przemysłu, [2003], GUS, Warsaw.
  40. Rocznik Statystyczny Przemysłu, [2005], GUS, Warsaw.
  41. Savage L.J. [1954], The Foundations of Statistics, Wiley, New York.
  42. Smith A.F.M., Roberts G.O. [1993], Bayesian Computation Via the Gibbs Sampler and Related Markov Chain Monte Carlo Methods, "Journal of the Royal Statistical Society", Series B, Vol. 55, No. 1.
  43. Internet webpage of Structural Funds [2007], http://www.funduszestrukturalne.gov.pl/, 01 September 2007.
  44. Tanner M.A., Wong W.H. [1987], The Calculation of Posterior Distributions by Data Augmentation, "Journal of the American Statistical Association", Vol. 82, No. 398.
  45. Tierney L. [1994], Markov Chains for Exploring Posterior Distributions, "Annals of Statistics", Vol. 22.
  46. Varian H.R. [1992], Microeconomic Analysis, W.W. Norton, New York.
  47. Welfe A. [2003], Ekonometria,, PWE, Warsaw.
  48. Zellner A. [1971] An Introduction to Bayesian Inference in Econometrics, Wiley, New York.
Cytowane przez
Pokaż
ISSN
2084-4573
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu