BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Kotłowski Jacek
Tytuł
Forecasting inflation with dynamic factor model - the case of Poland
Źródło
Department of Applied Econometrics Working Papers, 2008, nr 2, 28 s., tab., bibliogr. 20 poz.
Słowa kluczowe
Inflacja, Model wektorowej autoregresji, Makroekonomia
Inflation, Vector Autoregression Model (VAR), Macroeconomics
Kraj/Region
Polska
Poland
Abstrakt
The purpose of the article is to evaluate the forecasting performance of dynamic factor models in forecasting inflation in the Polish economy. The factor models are based on the assumption that the behavior of most macroeconomic variables can be well described by several unobservable factors, which are often interpreted as the driving factors in the economy. Such models are very often successfully used for forecasting. Employing several factors instead of a large number of explanatory variables may increase the number of degrees of freedom with the same information content. In the article we compare forecast accuracy of dynamic factor models with the forecast accuracy of three competitive models: univariate autoregressive model, VAR model and the model with leading indicator from the business survey. We have used 92 monthly time series from the Polish and world economy to conduct the out-of-sample real time forecasts of inflation (consumer price index). The results are encouraging. The dynamic factor model outperforms other models for both 1-step ahead and 3-step ahead forecast. The advantage of factor models is more straightforward for 1-month than for 3-month horizon.(original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Armah, N.A., Swanson, N.R. [2007], Seeing inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Largescale Macroeconomic Time Series Environments, mimeo.
  2. Altissimo, F., A. Bassanetti, R. Cristadoro, M. Forni, M. Hallin, M. Lippi, L. Reichlin, [2001], EuroCOIN: a real time coincident indicator of the euro area business cycle, CEPR Working Paper nr 3108.
  3. Artis, M. J., A. Banerjee, M. Marcellino [2005], Factor forecasts for the UK, Journal of Forecasting, nr 24(4), pp. 279-298.
  4. Bai, J. [2003], Inferential theory for factor models of large dimensions, Econometrica, nr 71, pp. 135-171.
  5. Bai, J., S. Ng [2002], Determining the number of factors in approximate factor models, Econometrica, nr 70 pp. 191-221.
  6. Bernanke, B., J. Boivin, and P. Eliasz [2005], Measuring Monetary Policy: A Factor Augmented Vector Autoregressive (FAVAR) Approach, Quarterly Journal of Economics, nr 120(1), pp. 387-422.
  7. Breitung, J., S. Eickmeier [2006], Dynamic factor models, w: O. Hübler, J. Frohn (ed.), Modern econometric analysis, ch. 3, Springer 2006.
  8. Chong, Y.Y, D.F. Hendry [1986], Econometric Evaluation of Linear Macro-economic Models, Review of Economic Studies, nr 53, pp. 671-690.
  9. Eickmeier, S. [2004], Business cycle transmission from the US to Germany - a structural factor approach, Bundesbank Discussion Paper nr 12/2004.
  10. Engle, R.F., M.W. Watson [1981], A One-Factor Multivariate Time Series Model of Metropolitan Wage Rates, Journal of the American Statistical Association, nr 76, pp. 774- 781.
  11. Forni, M., M. Hallin, M. Lippi, L. Reichlin [2005], The generalized dynamic factor model: one sided estimation and forecasting, Journal of the American Statistical Association, nr 100, pp. 830-840.
  12. Geweke, J. [1977], The dynamic factor analysis of economic time series, ch. 19 w: Aigner, D.J., A.S. Goldberger (ed.), Latent variables in socio-economic models, Amsterdam: North Holland.
  13. Kapetanios, G., M. Marcellino [2004], A parametric estimation method for dynamic factor models of large dimensions, Queen Mary University of London Working Paper nr 489.
  14. Sargent, T., C. Sims [1977], Business cycle modelling without pretending to have too much a-priori economic theory, w: C. Sims (ed.), New methods in business cycle research, Minneapolis: Federal Reserve Bank of Minneapolis.
  15. Stock, J., and M. Watson [1991], A Probability Model of the Coincident Economic Indicators, w: K. Lahiri, G.H. Moore (ed.), Leading Economic Indicators: New Approaches and Forecasting Records, ch. 4., New York, Cambridge University Press, pp. 63-85.
  16. Stock, J., M. Watson [1998], Diffusion Indexes, Working Paper nr 6702, National Bureau of Economic Research.
  17. Stock, J., M. Watson [2002a], Macroeconomic forecasting using diffusion indexes, Journal of Business and Economic Statistics, nr 20, pp. 147-162.
  18. Stock, J., M. Watson [2002b]. Forecasting using principal components from a large number of predictors, Journal of the American Statistical Association nr 97, pp. 1167-1179.
  19. Stock, J., M. Watson [2005], Implications of Dynamic Factor Models for VAR Analysis, Working Paper nr 11467, National Bureau of Economic Research.
  20. West, K. D. [2005], Forecast Evaluation, w: Handbook of Economic Forecasting, G. Elliott, C.W.J. Granger and A. Timmermann (ed), North Holland Press, Amsterdam.
Cytowane przez
Pokaż
ISSN
2084-4573
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu