BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Sierociuk Dominik (Warsaw University of Technology, Poland)
Fractional Kalman Filter Algorithms for Correlated System and Measurement Noises
Control and Cybernetics, 2013, vol. 42, nr 2, s. 471-490, bibliogr. s. 488-490
Słowa kluczowe
Filtry Kalmana, Szum informacyjny, Korelacja
Kalman filters, Information noise, Correlation
The paper presents a generalization of the Fractional Kalman Filter to a case when correlated system and measurement noises appear. The algorithm proposed is derived in detail for a linear generalized discrete fractional order state-space system for both constant and variable order cases. In order to present the efficiency of the proposed algorithm, results of numerical simulations are presented. Results of numerical experiments are compared with the effect of estimation obtained when using the traditional Fractional Kalman Filter algorithm. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Pełny tekst
  1. BENMALEK M. & CHAREF A. ( 2009) Digital fractional order operators for r-wave detection in electrocardiogram signal. IET Signal Processing 3(5), 381-391.
  2. BROWN R.& HWANG P. (1997) Introduction to Random Signals and Applied Kalman Filtering. With Matlab Exercises and Solutions. John Wiley & Sons, Inc., New York.
  3. MONJE C.A., CHEN Y. Q., VINAGRE B.M., XUE D., & FELIU-BATLLE V. (2010) Fractional-order Systems and Controls. Fundamentals and Applications. Springer.
  4. DZIELIŃSKI A. & SIEROCIUK D. (2008a) Stability of discrete fractional order state-space systems. JVC/Journal of Vibration and Control 14(9-10), 1543-1556.
  5. DZIELIŃSKI A. & SIEROCIUK D. (2008b) Ultracapacitor modelling and control using discrete fractional order state-space model. Acta Montanistica Slovaca 13(1), 136-145.
  6. DZIELIŃSKI A. & SIEROCIUK D. (2010) Fractional order model of beam heating process and its experimental verification. In: D. Baleanu, Z. B. Guvenc & J. A. T. Machado, eds, New Trends in Nanotechnology and Fractional Calculus Applications. Springer Netherlands, 287-294.
  7. DZIELIŃSKI A., SIEROCIUK D. & SARWAS G. (2010) Some applications of fractional order calculus. Bulletin of the Polish Academy of Sciences - Technical Sciences 58(4), 583-592.
  8. DZIELIŃSKI, A. & SIEROCIUK D. (2007) Reachability, controllability and observability of the fractional order discrete state-space system. In: Proceedings of IEEE/IFAC International Conference on Methods and Models in Automation and Robotics, MMAR'07. Szczecin, Poland, 129-134.
  9. KACZOREK T. (2009) Positive 2D fractional linear systems. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 28(2), 341-352.
  10. KALMAN R.E. (1960) A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering 82 (Series D), 35-45.
  11. KIANI-B A., FALLAHI K., PARIZ N. & LEUNG H. (2009) A chaotic secure communication scheme using fractional chaotic systems based on an extender fractional Kalman filter. Communications in Nonlinear Science and Numerical Simulation 14(3), 863-879.
  12. KIRKKO-JAAKKOLA M., COLLIN J. & TAKALA J. (2012) Bias Prediction for MEMS Gyroscopes. IEEE Sensors Journal 12(6).
  13. LORENZO C.F. & HARTLEY T.T. (2002) Variable order and distributed order fractional operators. Nonlinear Dynamics 29(1-4), 57-98.
  14. OLDHAM K. B. & SPANIER J. ( 1974) The Fractional Calculus. Academic Press, New York.
  15. OSTALCZYK P. (2010) Stability analysis of a discrete-time system with a variable-, fractional-order controller. Bulletin of the Polish Academy of Sciences-Technical Sciences 58(4), 613-619.
  16. OSTALCZYK P. & RYBICKI T. (2008) Variable-fractional-order dead-beat control of an electromagnetic servo. Journal of Vibration and Control 14(9-10), 1457-1471.
  17. PODLUBNY I. (1999) Fractional Differential Equations. Academic Press, San Diego.
  18. ROMANOVAS M., KLINGBEIL L., TRAECHTLER M. &MANOLI Y. (2009) Application of fractional sensor fusion algorithms for inertial MEMS sensing. Mathematical Modelling and Analysis 14(2), 199-209.
  19. SAMKO S.G., KILBAS A.A.& MARITCHEV O.I. (1993) Fractional Integrals and Derivatives. Theory and Applications. Gordon & Breach Sci. Publishers, London.
  20. SHENG H., CHEN Y. Q. & QIU T. (2012) Fractional Processes and Fractional- Order Signal Processing: Techniques and Applications. Springer-Verlag, London.
  21. SIEROCIUK D. (2012) System properties of fractional variable order discrete state-space system. In: 13th International Carpathian Control Conference (ICCC), 2012, 643-648.
  22. SIEROCIUK D., DZIELIŃSKI A., SARWAS G., PETRAS I., PODLUBNY I. & SKOVRANEK T. (2013) Modelling heat transfer in heterogeneous media using fractional calculus. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, 1990, 20120146.
  23. SIEROCIUK D., PODLUBNY I. & PETRAS I. (2012) Experimental evidence of variable-order behavior of ladders and nested ladders. IEEE Trans. Control Systems Technology 21, 2, 459-466.
  24. SIEROCIUK D., TEJADO I. & VINAGRE B.M. (2011) Improved fractional Kalman filter and its application to estimation over lossy networks. Signal Processing 91(3), 542-552.
  25. SIEROCIUK D. (2005) Fractional Order Discrete State-Space System Simulink Toolkit User Guide.˜dsieroci/fsst/fsst.htm.
  26. SIEROCIUK D. & DZIELIŃSKI A. (2006) Fractional Kalman filter algorithm for states, parameters and order of fractional system estimation. International Journal of Applied Mathematics and Computer Science 16(1), 101-112.
  27. SUN H. G., CHEN W., WEI H. & CHEN Y. Q. (2011) A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. European Physical Journal-Special Topics 193(1), 185-192.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu