BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Gurgul Henryk (Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie), Suder Marcin (Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie)
Tytuł
Identyfikacja chaosu deterministycznego w szeregach czasowych wypłat z bankomatów firmy EURONET
Identification of Deterministic Chaos in Time Series of ATMs' Withdrawals of Euronet Network
Źródło
Zeszyty Naukowe Wyższej Szkoły Ekonomii i Informatyki w Krakowie, 2013, z. 9, s. 105-119, tab., rys., bibliogr. 32 poz.
Słowa kluczowe
Bankomaty, Zastosowanie teorii chaosu, Szeregi czasowe, Metody ekonometryczne, Przegląd literatury
Cash machine, Application of chaos theory, Time-series, Econometric methodology, Literature review
Uwagi
summ.
Abstrakt
Celem niniejszej pracy jest wykazanie, że metody ekonometryczne oparte na teorii chaosu mogą zostać wykorzystane do opisu struktury wypłat z bankomatów. Uzyskanie potwierdzenia fraktalnych właściwości szeregów czasowych dobowych wypłat z bankomatów stworzyłoby możliwość zastosowania teorii chaosu do usprawnienia zarządzania ich siecią. W szczególności mogłoby to pomóc w doborze metod prognostycznych jakie należałoby zastosować do krótkoterminowej predykcji wypłat z bankomatów. Dodatkowo w pracy zostanie sprawdzone czy szeregi czasowe generowane przez bankomaty znajdujące się w różnych lokalizacjach różnią się co do badanych właściwości. W Polsce, zgodnie z wiedzą autorów, nie były dotąd badane właściwości chaotyczne wypłat z bankomatów. W następnym rozdziale zostanie omówiona literatura ekonometryczna dotycząca tej tematyki. W rozdziale 2 zostaną przedstawione źródła i charakterystyki opisowe danych. Rozdział 3 zawiera przegląd i opis stosowanych w pracy metod identyfikacji chaosu deterministycznego. W rozdziale 4 zostaną przedstawione wyniki uzyskanych analiz wraz z ich interpretacją. Wnioski z przeprowadzonych badań zostaną sformułowane w rozdziale 5.(fragment tekstu)

Empirical results based on ATMs' withdrawals suggest existence of nonlinear structures in analysed time series. Large values of Hurst exponent are in favour of existence of long memory in time series under study and therefore confirm nonlinearity. In addition, existence of chaos is supported by convergence of correlation dimension (in all cases under study) as dimension of submersion changes. The frontier values of correlation dimension do not suggest low dimensional chaos. They suggest existence of multifractals in analysed data. However, although the largest Lyapunov exponents are positive numbers it cannot be claimed that ATMs' withdrawals exhibit surely chaotic structures, because these computed values are rather small. This fact is against fractal nature of withdrawals time series. The data with respect to deterministic chaos exhibit similar features independently of location of ATM and size of withdrawals. In future research the larger sample also from other Polish provinces should be taken into account in order to make our results more conclusive and robust. The confirmation of chaotic behavior of ATMs' withdrawals time series would justify potential application of chaos theory in management of ATMs' network, especially would allow building and estimation of forecast models.(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Amromin E., Chakravorti S., Debit card and cash usage: a cross-country analysis, Technical report, Federal Reserve Bank of Chicago, 2007.
  2. Beran J .A., Statistical methods for data with long-range dependence, Statistical Science, 1992, Vol. 7, s. 404-427.
  3. Boeschoten W.C., Cash management, payment patterns and the demand for money, De Economist, 146, 1998. s. 117-42.
  4. Brentnall A.R., Crowder M.J., Hand, D.J., A statistical model for the temporal pattern of individual automated teller machine withdrawals, Applied Statistics, No 57, Part 1, 2008, s. 43-59.
  5. Brentnall A.R., Crowder M.J., Hand D.J., Predicting the amount individuals withdraw at cash machines using a random effects multinomial model. Statistical Modelling, 10(2), 2010, s. 197-214.
  6. Brock W.A., Hsieh D., LeBaron В., A Test of Nonlinear Dynamics, Chaos, and Instability, Cambridge: MIT Pres, 1991.
  7. Carlsen M., Storgaard P.E., Dankort payments as a timely indicator of retail sales in Denmark, Danmarks Nationalbank Working Papers, No. 66, 2010.
  8. Cleveland W. S., Devlin S.J., Calendar Effects in Monthly Time Series: Detection by Spectrum Analysis and Graphical Methods, Journal of the American Statistical Association, 371, 75, 1980, s. 487-496.
  9. Cleveland W.P., Grupe M.R., Modeling time series when calendar effects are present. Applied Time Series Analysis of Economic Data, Zellner, A. (editor), U.S. Department of Commerce, U.S. Bureau of the Census, Washington D.C., 1983, s. 57-67.
  10. Dockner E. J., Prskawetz A., Feichtinger G., Non-linear dynamics and predictability in the Austrian stock market, in: System Dynamics in Economic and Financial Models, C. Heij et al. (eds) John Wiley & Sons, Chichester, UK 1997.
  11. Esteves P.S., Are ATM/POSData Relevant When Now casting Private Consumption?, Banco de Portugal Working Paper, 25, 2009.
  12. Findley D. F., Monsell B.C., Modeling Stock Trading Day Effects Under Flow Day-of-Week Effect Constraints Journal of Official Statistics, Vol. 25(3), 2009, s. 415-430.
  13. Findley D.F., Monsell B.C., Bell W.R., Otto M.C., Chen B.C., New capabilities and Methods of the X-12-ARIMA seasonal adjustment program, Journal of Business and Economic Statistics, vol. 16(2), 1998, s. 127-77.
  14. Findley D.F., Soukup R.J., On the Spectrum Diagnostics Used by X-12-AR1MA to Indicate the Presence of Trading Day Effects after Modeling or Adjustment, Proceedings of the American Statistical Association, Business and Statistics Section, 1999, s. 144-49.
  15. Findley D.F., Soukup R.J., Modeling and Model Selection for Moving Holidays, Proceedings of the America Statistical Association, Business and Economics Statistics Section, 2000, s. 102-07.
  16. Findley D.F., Soukup R.J., Detection and Modeling of Trading Day Effects, in ICES II: Proceedings of the Second International Conference on Economic Surveys, 2001, s. 743-53.
  17. Galbraith J.W., Tkacz G., Electronic Transactions as High- Frequency Indicators of Economic Activity, Bank of Canada Working Paper, 2007-58.
  18. Grassberger P., Procaccia I., Characterization of strange attractors. Physical Review Letters, Vol. 50, 1983 s. 346-349.
  19. Gurgul H., Suder M., Ekonometryczna analiza fraktalnych właściwości struktury przepływu gazu w wybranych stacjach stopnia. Ekonomia Menedżerska, nr 11, 2012, s. 77-99.
  20. Hansen P.R., Lunde A., Nason J.M., Testing the Significance of Calendar Effects, Federal Reserve Bank of Atlanta 2005.
  21. Hand D.J., Blunt G., Prospecting for gems in credit card data, IMA Journal of Management Mathematics, 12, 2001, s. 173-200.
  22. Hurst H.E., The Long Term Storage Capacity of Reservoirs, Transactions of the American Society of Civil Engineers, 116, 1951.
  23. Jaditz, Т., Sayers C.L., Is chaos generic in economic data? International Journal of Bifurcations and Chaos.) 1993, s. 745-55.
  24. Liu L.M., Analysis of Time Series with Calendar Effects, Management Science, 26, 1980, s. 106-112.
  25. McElroy T.S., Holland S., A Nonparametric Test for Assessing Spectral Peaks, Research Report 2005-10, Statistical Research Division, U.S. Bureau of the Census, Washington D.C., 2005.
  26. Peters E.E., Teoria Chaosu a Rynki Kapitałowe, WIG Press, Warszawa, 1997.
  27. Rodrigues P., Esteves P., Calendar effects in daily ATM withdrawals, Economics Bulletin, Vol. 30 no. 4, 2010, s. 2587-2597.
  28. Simutis R., Dilijonas D., Bastina L., Cash demand forecasting for ATM using Neural Networks and support vector regression algorithms, 20th International Conference, EURO Mini Conference, "Continuous Optimization and Knowledge-Based Technologies" (EurOPT-2008), Selected Papers, Vilnius May 20-23, 2008, s.416-421.
  29. Sinai Y.G., On the concept of entropy for a dynamic system, Doklady Akademii Nauk SSSR, Vol. 124, 1959, s. 768-771.
  30. Sellman H.,Viren M., ATM networks and cash usage, Applied Financial Economics, 19(10), 2009, s. 841-851.
  31. Sneyers R., Climate chaotic instability: statistical determination and theoretical background, Environmetrics, vol. 8(5), 1997, s. 517-532.
  32. Takala K.,Viren M., Impact of ATMs on the Use of Cash, Communications and Strategies, No 66, 2007, s. 47-61
Cytowane przez
Pokaż
ISSN
1734-5391
Język
pol
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu