BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Moreno Ginés (University of Castilla-La Mancha, Spain), Penabad Jaime (University of Castilla-La Mancha, Spain), Vázquez Carlos (University of Castilla-La Mancha, Spain)
Tytuł
Fuzzy Logic Rules Modeling Similarity-based Strict Equality
Źródło
Annals of Computer Science and Information Systems, 2014, vol. 2, s. 119-128, rys., bibliogr. 29 poz.
Słowa kluczowe
Programowanie obiektowe, Języki programowania, Informatyka
Object-oriented programming (OOP), Programing languages, Information science
Uwagi
summ.
Abstrakt
A classical, but even nowadays challenging research topic in declarative programming, consists in the design of powerful notions of <>, as occurs with the flexible (fuzzy) and efficient (lazy) model that we have recently proposed for hybrid declarative languages amalgamating functional-fuzzy logic features. The crucial idea is that, by extending at a very low cost the notion of <> typically used in lazy functional (HASKELL) and functional-logic (CURRY) languages, and by relaxing it to the more flexible one of similarity-based equality used in modern fuzzy-logic programming languages (such as LIKELOG and BOUSI-PROLOG), similarity relations can be successfully treated while mathematical functions are lazily evaluated at execution time. Now, we are concerned with the socalled <>, MALP in brief, which can be seen as an enrichment of PROLOG based on weighted rules with a wide range of fuzzy connectives. In this work, we revisit our initial notion of SSE (<>) in order to re-model it at a very high abstraction level by means of a simple set of MALP rules. The resulting technique (which can be tested on-line in dectau.uclm.es/sse) not only simulates, but also surpass in our target framework, the effects obtained in other fuzzy logic languages based on similarity relations (with much more complex/reinforced unification algorithms in the core of their procedural principles), even when the current operational semantics of MALP relies on the simpler, purely syntactic unification method of PROLOG.(original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. "Fuzzy Computed Answers Collecting Proof Information," in Advances in Computational Intelligence - Proc of the 11th Int. Work-Conference on Artificial Neural Networks, IWANN'11, J. C. et al., Ed. Springer Verlag, LNCS 6692, 2011, pp. 445-452.
  2. Almendros-Jiménez J., Luna A., and Moreno G., "A Flexible XPath-based Query Language Implemented with Fuzzy Logic Programming," in Proc. of 5th Int. Symposium on Rules: Research Based, Industry Focused, RuleML'11. Barcelona, Spain, July 19-21, N. Bassiliades, G. Governatori, and A. Pasckhe, Eds. Springer Verlag, LNCS 6826, 2011, pp. 186-193. [Online]. Available: http://dl.acm.org/citation.cfm?id=2032787.2032807
  3. Arcelli F. and Formato F., "Likelog: A logic programming language for flexible data retrieval," in Proc. of the 1999 ACM Symposium on Applied Computing (SAC'99), February 28 - March 2, 1999, San Antonio, USA. ACM, Artificial Intelligence and Computational Logic, 1999, pp. 260-267. [Online]. Available: http://doi.acm.org/10.1145/298151.298348
  4. Baldwin J. F., Martin T. P., and Pilsworth B. W., Fril- Fuzzy and Evidential Reasoning in Artificial Intelligence. John Wiley & Sons, Inc., 1995.
  5. Bratko I., Prolog Programming for Artificial Intelligence. Addison Wesley, 2000.
  6. Bröcheler M., Mihalkova L., and Getoor L., "Probabilistic similarity logic," Computing Research Repository, vol. abs/1203.3469, 2012. [Online]. Available: http://arxiv.org/abs/1203.3469
  7. Caballero R., Rodríguez-Artalejo M., Romero-Díaz C. A., "Similarity-based reasoning in qualified logic programming," in Proceedings of the 10th Int. ACM SIGPLAN conference on Principles and practice of declarative programming, ser. PPDP'08. New York, USA: ACM, 2008, pp. 185-194. [Online]. Available: http://doi.acm.org/10.1145/1389449.1389472
  8. Hall C. V., Hammond K., Partain W., Jones S. L. P., and Wadler P., "The glasgow haskell compiler: A retrospective," in Functional Programming, ser. Workshops in Computing, J. Launchbury and P. M. Sansom, Eds. Springer, 1992, pp. 62-71. [Online]. Available: http://dl.acm.org/citation.cfm?id=647557.729914
  9. Hanus M.(ed.), "Curry: An Integrated Functional Logic Language," Available at http://www.informatik.uni-kiel.de/ ̃mh/curry/, 2003.
  10. Ishizuka M. and Kanai N., "Prolog-ELF Incorporating Fuzzy Logic," in Proceedings of the 9th Int. Joint Conference on Artificial Intelligence, IJCAI'85, A. K. Joshi, Ed. Morgan Kaufmann, 1985, pp. 701-703. [Online]. Available: http://dl.acm.org/citation.cfm?id=1623611.1623612
  11. Julián P., "A procedure for the construction of a similarity relation," in Proc. of 12th Information Processing and Management of Uncertainty, IPMU'08,June 22-27, Málaga, Spain, M. Ojeda, Ed. Springer CCIS 80 (Part I), 2008, pp. 489-́n496.
  12. Julián P., Rubio C., Gallardo J., "Bousi∼prolog: a prolog extension language for flexible query answering," Electronic Notes in Theoretical Computer Science, vol. 248, pp. 131-147, 2009. [Online]. Available: http://dx.doi.org/10.1016/j.entcs.2009.07.064
  13. Kimmig A., Demoen B., Raedt L. D., Costa V. S., and Rocha R., "On the implementation of the probabilistic logic programming language problog," TPLP, vol. 11, no. 2-3, pp. 235-262, 2011. [Online]. Available: http://dx.doi.org/10.1017/S1471068410000566
  14. Lee R., "Fuzzy Logic and the Resolution Principle," Journal of the ACM, vol. 19, no. 1, pp. 119-129, 1972. [Online]. Available: http://doi.acm.org/10.1145/321679.321688
  15. Li D. and Liu D., A fuzzy Prolog database system. John Wiley & Sons, Inc., 1990.
  16. Lloyd J., Foundations of Logic Programming. Springer-Verlag, Berlin, 1987, second edition.
  17. Medina J., Ojeda-Aciego M., Vojtáš P., "Similarity-based Unification: a multi-adjoint approach," Fuzzy Sets and Systems, vol. 146, pp. 43-62, 2004. [Online]. Available: http://dblp.uni-trier.de/db/journals/fss/fss146.html#MedinaOV04
  18. Morcillo P. and Moreno G., "Programming with Fuzzy Logic Rules by using the FLOPER Tool," in Proc of the 2nd. Rule Representation, Interchange and Reasoning on the Web, Int. Symposium, RuleML'08, N. B. et al., Ed. Springer Verlag, LNCS 3521, 2008, pp. 119-126. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-88808-614
  19. Morcillo P., Moreno G., Penabad J., and Vázquez C., "A Practical Management of Fuzzy Truth Degrees using FLOPER," in Proc. Of 4nd Int. Symposium on Rule Interchange and Applications, RuleML'10, M. D. et al., Ed. Springer Verlag, LNCS 6403, 2010, pp. 20-34. [Online]. Available: http://dl.acm.org/citation.cfm?id=1929574.1929580
  20. Morcillo P., Moreno G., Penabad J., and Vázquez C., "Declarative Traces into Fuzzy Computed Answers," in Proc. of 5th Int. Symposium on Rules: Research Based, Industry Focused, RuleML'11. Barcelona, Spain, July 19-21, N. Bassiliades, G. Governatori, and A. Pasckhe, Eds. Springer Verlag, LNCS 6826, 2011, pp. 170-185. [Online]. Available: http://dl.acm.org/citation.cfm?id=2032787.2032806
  21. Morcillo P., Moreno G., Penabad J., and Vázquez C., "Dedekind-MacNeille completion and cartesian product of multi-adjoint lattices," Int. Journal of Computer Mathematics, vol. 89, no. 13-14, pp. 1742-1752, 2012. [Online]. Available: http://dx.doi.org/10.1080/00207160.2012.689826
  22. Moreno G. and Pascual V., "A hybrid programming scheme combining fuzzy-logic and functional-logic resources," Fuzzy Sets and Systems, vol. 160, pp. 1402-1419, 2009. [Online]. Available: http://dx.doi.org/10.1016/j.fss.2008.11.028
  23. Moreno G. and V ̊uzquez C., "Fuzzy logic programming in action with floper," Journal of Software Engineering and Applications, vol. 7, pp. 237-298, 2014. [Online]. Available: http://dx.doi.org/10.4236/jsea.2014.74028
  24. Moreno G., "Similarity-based equality with lazy evaluation," in Proc. Of the 13th Int. Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, IPMU'10, June 28-July 2, Dortmund, Germany, E. Hullermeier, R. Kruse, and F. Hoffmann, Eds. Springer CCIS 80 (Part I), 2010, pp. 108-117.
  25. Moreno G., Penabad J., and Vázquez C., "SSE: Similarity-based strict equality for multi-adjoint logic programs," in Proceedings 12th Int. Conference on Mathematical Methods in Science and Engineering, CMMSE'12. La Manga (Murcia), Spain, July 2-5, J. Vigo-Aguiar, Ed., vol. III. ISBN: 978-84-615-5392-1, 2012, pp. 876-887.
  26. Nguyen H. and Walker E., A First Course in Fuzzy Logic. Chapman & Hall/CRC, Boca Ratón, Florida, 2000.
  27. Rubio-Manzano C. and Julián-Iranzo P., "A fuzzy linguistic prolog and its applications," Journal of Intelligent and Fuzzy Systems, vol. 26, no. 3, pp. 1503-1516, 2014. [Online]. Available: http://dx.doi.org/10.3233/IFS-130834
  28. Sessa M., "Approximate reasoning by similarity-based SLD resolution," Fuzzy Sets and Systems, vol. 275, pp. 389-426, 2002. [Online]. Available: http://dx.doi.org/10.1016/S0304-3975(01)00188-8
  29. Zadeh L. A., "Similarity relations and fuzzy orderings," Information Sciences, vol. 3, pp. 177-200, 1971. [Online]. Available: http://dx.doi.org/10.1016/S0020-0255(71)80005-1
Cytowane przez
Pokaż
ISSN
2300-5963
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu