BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Pery Marcin (Military University of Technology in Warsaw, Poland)
Tytuł
Dynamic Weighting. New method of weighting panels with large numbers of weighting parameters
Źródło
Annals of Computer Science and Information Systems, 2014, vol. 2, s. 129 - 134, tab., bibliogr. 16 poz.
Słowa kluczowe
Układ wagowy, Badanie Internetu, Metodologia badań
Weighing design, Internet survey, Research methodology
Uwagi
summ.
Abstrakt
The algorithm for dynamic weighing presented in this paper is a method used in research studies based on samples when due to the large number of weighting parameters it is not possible to establish a fixed set of sample weights without nonacceptable dispersion of weights.(original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Brown K. W., Cozby P. C., Kee D. W., Worden P. E., Research Methods in Human Development, Mountain View, CA , 1999.
  2. Cochran W. G., Sampling Techniques, New York, 1977.
  3. Coffey S., Internet audience measurement: a practitioner's view, Journal of Interactive Advertising, 2013
  4. Ejdys P., Cisek T., Modzelewski C., Real Profilee, a new aproach to online media planning, Worldwide Audience Measurement 2003 - Online and Out-of-Home / Ambient Media, 2003
  5. Jackowski K.: Multiple Classifier System with Radial Basis Weight Function. HAIS (1) 2010: 540-547
  6. Kalton G., Introduction to Survey Sampling. Sage Publications Series, No. 35, 1983.
  7. Kish L., Survey Sampling, New York, 1965.
  8. Krawczyk B., Schaefer G.: A hybrid classifier committee for analysing asymmetry features in breast thermograms. Appl. Soft Comput. 20: 112-118 (2014)
  9. Lehtonen R., Pahkinen E. J., Practical Methods for Design and Analysis of Complex Surveys. New York, 1995.
  10. Levy S., Lemeshow S., Sampling of Populations: Methods and Applications, New York, 1999.
  11. Lohr H., Sampling: Design and Analysis, Duxbury, 1999
  12. Lohr S., Sampling: Design and Analysis. Pacific Grove, 1999.
  13. Ruta D., Gabrys B.: Classifier selection for majority voting. Information Fusion 6(1): 63-81 (2005)
  14. Stuart A., Basic Ideas of Scientific Sampling, Hafner Publishing Company, New York, 1962.
  15. Wozniak M., Graña M., Corchado E.: A survey of multiple classifier systems as hybrid systems. Information Fusion 16: 3-17 (2014)
  16. Wozniak M., Krawczyk B.: Combined classifier based on feature space partitioning. Applied Mathematics and Computer Science 22(4): 855-866 (2012)
Cytowane przez
Pokaż
ISSN
2300-5963
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu