BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Kvassay Miroslav (University of Žilina, Slovakia), Zaitseva Elena (University of Žilina, Slovakia)
Construction of Healthcare System Structure for Reliability Analysis
Annals of Computer Science and Information Systems, 2014, vol. 2, s. 191 - 199, rys., tab., bibliogr. 25 poz.
Słowa kluczowe
Medycyna, Opieka zdrowotna, Technologia informacyjna, Zdrowie
Medicine, Health care, Information Technology (IT), Health
The principal goal of information technologies application in medicine is improvement of medical care. Modern healthcare systems have to perfect care of patient. Therefore the healthcare has to be characterized by high reliability first of all and reliability analysis of such system is an important problem. Most of the reliability analysis methods suppose the investigation of the structure of system. But the healthcare system consists of the heterogeneous components as software, hardware, human factor and etc. The structure definition for such system is complex problem. We propose original approach for the construction of healthcare system structure based on the monitoring of the system behavior. The monitoring examples are interpreted as Direct Partial Logic Derivatives of the structure function of the healthcare system. And the structure function is definition of the correlation of system components states and system performance level unambiguously.(original abstract)
Pełny tekst
  1. Boedigheimer R. A. and Kapur K. C. Customer-driven reliability models for multistate coherent systems. IEEE Transactions on Reliability, vol. 43, no. 1, pp. 46-50, March 1994,
  2. Cutler R. B., Muroga S. Derivation of minimal sums for completely specified functions. IEEE Transactions on Computers, vol. C-36, no. 3, pp. 277-292, March 1987,
  3. Dhillon B. S., Human Reliability and Error in Medical System. Singapore: World Scientific, 2003, 232 p.
  4. Dhillon B. S., Medical Device Reliability and Associated Areas. Boca Raton FLA: CRC Press, 2000, 240 p.
  5. Eiter T., Makino K., Gottlob G. Computational aspects of monotone dualization: A brief suvery. Discrete Applied Mathematics, vol. 156, no. 11, pp. 2035±2049, June 2008,
  6. Gurvich V. and Khachiyan L. On generating the irredundant conjunctive and disjunctive normal forms of monotone Boolean functions. Discrete Applied Mathematics, vol. 96-97, pp. 363-373, , Oct. 1999,
  7. Hudson J. C. and Kapur K. C. Modules in coherent multistate systems. IEEE Transactions on Reliability, vol. R-32, no. 2, pp. 183±185, June 1983,
  8. Jain P. and Gopalakrishnan G., Efficient symbolic simulation-based verification using the parametric form of boolean expressions. IEEE Transactions On Computer-Aidede Design of Integrated Circuits and Sysytem, vol. 13, no. 8, pp. 1005-1015, Aug. 1994,
  9. Kuo W. and Zhu X., Importance Measures in Reliability, Risk, and Optimization. Chichester, UK: John Wiley & Sons, Ltd, 2012, 472 p.,
  10. Kvassay M., Zaitseva E., Levashenko V., Kostolny J. Minimal cut vectors and logical differentia calcus. in Proc. IEEE 44th International Symposium on Multiple-Valued Logic (ISMVL) 2014, pp. 167±172,
  11. Lisnianski A. and Levitin G., Multi-state System Reliability. Assessment, Optimization and Applications. Singapore: World Scientific, 2003, 376 p.
  12. Lisnianski A., Frenkel I. and Ding Y., Multi-state System Reliability Analysis and Optimization for Engineers and Industrial Managers. London, UK: Springer-Verlag London Ltd., 2010, 393 p.,
  13. Lyons M., Adams S., Woloshynowych M., Vincent Ch., Human reliability analysis in healthcare: A review of techniques. International Journal of Risk & Safety in Medicine, vol. 16, no. 4, pp. 223±237, Jan. 2004.
  14. Nakashima K., Nakamura Y., Takagi N. Logic expressions of monotonic multiple-valued functions. in Proc. IEEE 26th International Symposium on Multiple-Valued Logic (ISMVL) 1996, pp. 290-295,
  15. Natvig B., Multistate Systems Reliability Theory with Applications. New York, NY: Wiley, 2011, 262 p.,
  16. Rausand M., Hoyland A. System Reliability Theory: Models, Statistical Methods, and Applications. Haboken, NJ: John Wiley & Sons, Inc., 2004, 664 p.
  17. Schneeweiss W. G. A short Boolean derivation of mean failure frequency for any (also non-coherent) system. Reliability Engineering & System Safety, vol. 94, no. 8, pp. 1363±1367, Aug. 2009,
  18. Tapia M. A., Guima T. A. and Katbab A. Calculus for a multivalued-logic algebraic system. Applied Mathematics & Computation, vol. 42, no. 3, pp. 255±285, April 1991,
  19. Xie M., Dai Y. -S.and Poh K. - L., Computing System Reliability. Models and Analysis. New York, NY: Kluwer Academic Publishers, 2004, 293 p.
  20. Yanushkevich S. N., Miller D. M., Shmerko V. P. and Stankovic R. S., Decision Diagram Techniques for Micro- and Nanoelectronic Design. Handbook. Boca Raton, FL: CRC Press, 2006, 952 p.
  21. Zaitseva E. and Rusin M., Healthcare system representation and estimation based on viewpoint of reliability analysis. Journal of Medical Imaging and Health Informatics, vol. 2, no. 1, pp. 80±86, March 2012,
  22. Zaitseva E. N. and Levashenko V. G. Importance analysis by logical differentiall calculus. Automation and Remote Control, vol. 74, no. 2, pp. 171-182, Feb. 2013,
  23. Zaitseva E., Kostolny J., Kvassay M., Levashenko V. and Pancerz K. Failure analysis and estimation of the healthcare system. in Proc. Federated Conference on Computer Science and Information Systems (FedCSIS) 2013, pp. 235-240.
  24. Zaitseva E., Levashenko V., Multiple-Valued Logic mathematical approaches for multi-state system reliability analysis. Journal of Applied Logic, vol. 11, no. 3, pp. 350±362, Special Issue, 2013,
  25. Zio E., Reliability engineering: Old problems and new challenges. Reliability Engineering & System Safety, vol. 94, no. 2, pp. 125±141, Feb. 2009,
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu