- Autor
- Shangodoyin D. K. (University of Botswana, Botswana), Ojo J. F. (University of Ibadan, Nigeria), Olaomi J. O. (University of Botswana, Botswana), Adebile A. O. (Federal Polytechnic, Ede)
- Tytuł
- Time Series Model for Predicting the Mean Death Rate of a Disease
- Źródło
- Statistics in Transition, 2012, vol. 13, nr 2, s. 405-418, aneks, bibliogr. 24 poz.
- Słowa kluczowe
- Analiza szeregów czasowych, Umieralność, Modele autoregresji
Time-series analysis, Mortality, Autoregression models - Uwagi
- summ.
- Abstrakt
- This study develops a time series model to estimate the mean death rate of either an emerging disease or re-emerging disease with a bilinear induced model. The estimated death rate converges rapidly to the true parameter value for a given mean death at time t. The derived model could be used in predicting the m-step future death rate value of a given disease. We illustrated the new concept with real life data. (original abstract)
- Dostępne w
- Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu - Pełny tekst
- Pokaż
- Bibliografia
- AKAIKE, H. (1973). Maximum Likelihood Identification of Gaussian Auto-regresssive Moving Average Models. Biometrika 60, 255-265.
- ALTMAN, K.L. (2003). The SARS epidemic. The front line research. New York Times. May 07 Edition.
- ANDERSON, T.W. (1971). The Statistical Analysis of Time Series, New York and London Wiley.
- BUCHWALD, P. (2007). A general bilinear model to describe growth or decline time profiles Math Biosci. 2007 205 (1): 108-36.
- BRUNI, C., DUPILLO, G. and KOCH, G. (1974). Bilinear Systems: An Appealing Class of Nearly Linear System in Theory and Application. IEEE Trans. Auto Control Ac-19, 334-338.
- CHEN, C.W.S. (1992). Bayesian Inferences and forecasting in bilinear time series models. Communications in Statistics - Theory and Methods 21(6), 17251743.
- DONNELLY, C.A., et. al (2003). Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. The Lancet, 361,pg 1761-1766.
- GRANGER, C.W.J. and ANDERSON, A.P. (1978). Introduction to Bilinear Time Series Models. Vandenhoeck and Puprecht.
- GONCLAVES, E., JACOB P. and MENDES-LOPES N. (2000). A decision procedure for bilinear time series based on the Asymptotic Separation. Statistics, 333-348.
- HAGGAN, V. and OZAKI, T. (1980). Amplitude Dependent Exponential AR Model Fitting for Non-Linear Random Vibrations. Proc. International Time Series Meeting, Nottinghamm, ed. O. D. Anderson. North Holland.
- JONES, D.A. (1978). Non-linear Autoregressive Processes. Proc. Royal Soc. London (A) 360, 71-95.
- KINDIG, D A., SEPLAKI, C.L. and LIBBY, D.L. (2002). Death variation in US subpopulations. Bulletin of WHO, 80(1), pg 9-15.
- LI, W.K. and HUI, Y.V. (1983). Estimation of random coefficient autoregressive process: An empirical Bayes approach . Journal of Time Series Analysis, Vol. 4, No. 2. pg 89-94.
- LOHMANN, M.S. (2005). Data quality control and observations error estimation. www.ucar.edu.
- MARTINS, CM. (l997). A Note on the Third-Order Moment Structure of a bilinear model with Non-Independent Shocks. Potrugaliae Mathematica vol 56, 58-89.
- MATHERS, C D. and LONCAR, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLos Medicine. Vol. 3. Issue ll, pp 20ll-2030.
- MÖHLER, R.R. (l973). Bilinear Control Processes. New York: Academic Press.
- PRIESTELY, M B. (l978). Non-Linear Models in Time Series Analysis. The Statistician 27, l59-l76.
- SHANGODOYIN, D.K., OJO, J.F. and KOZAK, M. (20l0). Subsetting and identification of optimal models in one-dimensional bilinear time series modelling. International Journal of management science and Engineering management England, UK, 5(4), pp 252-260.
- SHANGODOYIN, D.K. (20l0). Using time series models to determine the death rate of a given disease. To appear in International Encyclopaedia of Statistical Science (Springer, USA).
- SUBBA RAO, T. (l98l). On the theory of Bilinear time Series Models ,Jour. R. Statist. Soc.B. 43, 244-255.
- TONG, H. AND CHAN, K. (2006). Estimating the death rate of an emerging disease by Time Series Analysis. Technical report, Department of Statistics & Actuarial Science, University of Iowa, Iowa, USA.
- TUAN DINH PHAM and LANH TAT TRAN (l98l). On the First Order Bilinear Time Series Model. Jour. Appli. Prob. l8, 6l7-627.
- WALKER, A.M. (l962). Large sample estimation of parameters of autoregressive processes with moving average residuals. Biometrika, 49, ll7-l3l.
- Cytowane przez
- ISSN
- 1234-7655
- Język
- eng