- Autor
- Sankle R. (Vikram University, Ujjain, India), Singh J. R. (Vikram University, Ujjain, India), Mangal I. K. (Madhav Science College)
- Tytuł
- Cumulative Sum Control Charts for Truncated Normal Distribution under Measurement Error
- Źródło
- Statistics in Transition, 2012, vol. 13, nr 1, s. 95-106, tab., bibliogr. 14 poz.
- Słowa kluczowe
- Rozkłady normalne, Błędy pomiarowe, Statystyka
Normal distribution, Measuring errors, Statistics - Uwagi
- summ.
- Abstrakt
- In the present paper Cumulative Sum Control Chart (CSCC) for the truncated normal distribution under measurement error (r) is discussed. The sensitivity of the parameters of the V-Mask and the Average Run Length (ARL) is studied through numerical evaluation for different values of R. (original abstract)
- Dostępne w
- Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu - Pełny tekst
- Pokaż
- Bibliografia
- A.B. YEH, D.K. LINAND and C. VENKATARAMANI. (2004).Unified CUSM Charts for Monitoring Process Mean and Variability, Quality Technology and Quantitative Management, Vol.1, No.1, pp.65-86.
- CHANG, M.N. (1990). Weak Convergence of a Self Consistent Estimator of the Survival Function with Doubly Censored Data, Annals of Statistics, 18: 391404.
- G.NENES and G. TAGARAS. (2010). Evaluation of CUSUM charts for Finite-Horizon Processes, Communication in Statistics-Simulation and Computation, Vol.39, Issue 3, pp.578-597.
- HUNTER, J.S. (1986). The Exponentially Weighted Moving Average ,Journal of Quality Technology, 18:203-210.
- J. H. RYU, H. WAN and S.KIM. (2010). Optimal Design of a CUSUM Chart for a Mean Shift Of Unknown Size, Journal of Quality Technology, Vol.42, No.3, pp.1-16.
- JOHNSON, N.L. and LEONE, F.C. (1962). Cumulative Sum Control Charts: Mathematical Principles Applied to their Construction and Use Part II, Industrial Quality Control XIV(2), pp.22-28.
- KEIDING, N. and GILL, R.D. (1987). Research Report No. 87/3, Statistical Research Unit, University Copenhagen, Denmark.
- M.A.A. COX. (2009). Control charts for monitoring observations from a truncated normal distribution, Journal of Risk Finance, Vol. 10 Iss: 3, pp.288 - 304.
- MOOD, A.M. & GRAYBILL, F.A. (1963). Introduction to the Theory of Statistics; Mc Graw Hill Book Co .Inc. second Edition.
- NELSON, W. (1990). Hazard Plotting of Left Truncated Life data, Journal of Quality Technology, 22:230-238.
- O,A.GRIGG and D.J. SPIEGELHALTER. (2008). An Empirical Approximation to the Null Unbounded Steady-State Distribution of the Cumulative Sum Statistic, Technometrics, 50(4):501-511.
- PATEL, M.N. and GAJJAR, A.V. (1994). Cumulative Sum Control Charts for Intervened Geometric Distribution, International Journal of Management and Systems,10(2):181-188.
- SCHEIDER, H. (1986). Truncated and Censored Samples from Normal Distribution, Marcel Dekker, New York.
- WOODROOFE, M. (1985). Estimating a Distribution Function with Truncated Data, Annals of Statistics, 13: 163-177.
- Cytowane przez
- ISSN
- 1234-7655
- Język
- eng