BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Katunin Andrzej (Silesian University of Technology, Poland), Przystałka Piotr (Silesian University of Technology, Poland)
Meta-optimization method for wavelet-based damage identification in composite structures
Annals of Computer Science and Information Systems, 2014, vol. 2, s. 429 - 438, rys., tab., bibliogr. 31 poz.
Słowa kluczowe
Maszyny i urządzenia, Eksploatacja, Algorytmy
Machinery and equipment, Exploitation, Algorithms
The damage identification problem is one of crucial problems during operation of machines' elements made of polymeric composites. Therefore the appropriate non-destructive techniques should be developed in order to detect and identify the damages with the best possible accuracy. Moreover, such methods should be applicable in various testing conditions. One of the intensively developed directions in non-destructive damage assessment is the methods based on wavelet analysis of modal shapes of vibration applied for a tested structure. The effectiveness of an algorithm is strongly dependent on the type of applied wavelet and its parameters. The proposed approach uses a combination of the wavelet-based damage identification algorithm with multi-objective meta-optimization in order to select optimal parameters of applied wavelets and determine a front of optimal non-dominated solutions, based on which the operator can choose the desired accuracy of damage identification with respect to the suitable computation time.(original abstract)
Pełny tekst
  1. Back T., "Parallel Optimization of Evolutionary Algorithms," Proc. Int. Conf. on Evolutionary Computation, " 1994, pp. 418-427,
  2. Branke J. and Elomari J. A., "Meta-Optimization for Parameter Tuning with a Flexible Computing Budget," Proc. 14th Annual Conf. on Genetic and Evolutionary Computation (GECCO12), Terence Soule (Ed.), New York, USA, 2012, pp. 1245-1252,
  3. Chang C.-C. and Chen L. W., "Damage Detection of a Rectangular Plate by Spatial Wavelet Based Approach," Appl. Acoust., vol. 65, 2004, pp. 819-832,
  4. Chaudhury K. N. and Unser M., "Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-Like Transforms," IEEE Trans. Signal Process., vol. 57, 2009, pp. 3411-3425,
  5. Clerc M. and Kennedy J., "The Particle Swarm - Explosion, Stability, and Convergence in a Multidimensional Complex Space," IEEE T. Evolut. Comput., vol. 6, 2002, pp. 58-73,
  6. Deb K., "Multi-Objective Optimization Using Evolutionary Algorithms," Wiley, 2009.
  7. Douka E., Loutridis S. and Trochidis A., "Crack Identification in Plates Using Wavelet Analysis," J. Sound Vib., vol. 270, 2004, pp. 279-295,
  8. Dumont J., Hernández A. and Carrault G., "Improving ECG Beats Delineation with an Evolutionary Optimization Process," IEEE Trans. Bio-Med. Eng., vol. 57, 2010, pp. 607-615,
  9. Fan W. and Qiao P., "A 2D Continuous Wavelet Transform of Mode Shape Data for Damage Detection of Plate Structures," Int. J. Solids Struct., vol. 46, 2009, pp. 4379-4395,
  10. Grefenstette J. J., "Optimization of Control Parameters for Genetic Algorithms," IEEE Trans. Syst. Man Cybern., vol. 16, 1986, pp. 122-128, pp. 215-228,
  11. Hein H. and Feklistova J., "Computationally Efficient Delamination Detection in Composite Beams Using Haar Wavelets," Mech. Syst. Signal Process., vol. 25, 2011, pp. 2257-2270,
  12. Huang Y., Meyer D. and Nemat-Nasser S., "Damage Detection with Spatially Distributed 2D Continuous Wavelet Transform," Mech. Mater., vol. 41, 2009, pp. 1096-1107,
  13. Katunin A. and Holewik F., "Crack Identification in Composite Elements with Non-Linear Geometry Using Spatial Wavelet Transform," Arch. Civ. Mech. Eng., vol. 13, 2013, pp. 287-296,
  14. Katunin A. and Przystałka P., "Damage Assessment in Composite Plates Using Fractional Wavelet Transform of Modal Shapes with Optimized Selection of Spatial Wavelets," Eng. Appl. Artif. Intell., vol. 30, 2014, pp. 73-85,
  15. Katunin A., "Crack Identification in Composite Beam Using Causal Bspline Wavelets of Fractional Order," Model. Eng., vol. 15, 2013, pp. 57-63.
  16. Katunin A., "Damage Identification in Composite Plates Using Two-Dimensional B-spline Wavelets," Mech. Syst. Signal Process., vol. 25, 2011, pp. 3153-3167,
  17. Katunin A., "Modal-Based Non-Destructive Damage Assessment in Composite Structures Using Wavelet Analysis: A Review," Int. J. Compos. Mater., vol. 3, 2013, pp. 1-9,
  18. Keane A. J., "Genetic Algorithm Optimization in Multi-Peak Problems: Studies in Convergence and Robustness," Artificial Intelligence in Engineering, vol. 9, 1995, pp. 75-83,
  19. Krawczuk M., Zak A. and Ostachowicz W., "Genetic Algorithms in Fatigue Crack Detection," J. Theor. Appl. Mech., vol. 39, 2001, pp. 815-823.
  20. Marler R. T. and Arora J. S., "Survey of Multi-Objective Optimization Methods for Engineering," Struct. Multidiscip. O., vol. 26, 2004, pp. 369-395,
  21. Meissner M., Schmuker M. and Schneider G., "Optimized Particle Swarm Optimization (OPSO) and Its Application to Artificial Neural Network Training," BMC Bioinformatics, vol. 7, 2006, 125,
  22. Mercer R. E. and Sampson J. R., "Adaptive Search Using a Reproductive Meta-Plan," Int. J. Syst. Cybern., vol. 7, 1977, pp. 215-228, http://dx.
  23. Mikki S. M. and Kishk A. A., "Particle Swarm Optimization: A Physics-Based Approach," Morgan and Claypool, 2008.
  24. Miya K., Uesaka M. and Yoshida Y., "Applied Electromagnetics Research and Application," Prog. Nucl. Energ., vol. 32, 1998, pp. 179-194,
  25. Rucka M. and Wilde K., "Neuro-Wavelet Damage Detection Technique in Beam, Plate and Shell Structures with Experimental Validation," J. Theor. Appl. Mech., vol. 48, 2010, pp. 579-604.
  26. Smit S. K. and Eiben A. E., "Comparing Parameter Tuning Methods for Evolutionary Algorithms," Proc. IEEE Congress on Evolutionary Computation (CEC), 2009, pp. 399-406,
  27. Tang K., Yao X., Suganthan P. N., MacNish C., Chen Y. P., Chen C. M., and Yang Z., "Benchmark Functions for the CEC'2008 Special Session and Competition on Large Scale Global Optimization," Technical Report, Nature Inspired Computation and Applications Laboratory, USTC, China,, 2007.
  28. Unser M. and Blu T., "Fractional Splines and Wavelets," SIAM Rev., vol. 42, 2000, pp. 43-67,
  29. Xiang J. and Liang M., "A Two-Step Approach to Multi-Damage Detection for Plate Structures," Eng. Fract. Mech., vol. 91, 2012, pp. 73-86,
  30. Yam L. H., Jan Y. J. and Jiang J. S., "Vibration-Based Damage Detection for Composite Structures Using Wavelet Transform and Neural Network Identification," Compos. Struct., vol. 60, 2003, pp. 403-412,
  31. Zhong S. and Oyadiji S. O., "Crack Detection in Simply-Supported Beams Without Baseline Modal Parameters by Stationary Wavelet Transform," Mech. Syst. Signal Process., vol. 21, 2007, pp. 1853-1884,
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu