BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Wawrzynczak-Szaban Anna (Siedlce University of Natural Sciences and Humanities, Poland), Jaroszyński Marcin (Siedlce University of Natural Sciences and Humanities, Poland), Borysiewicz Mieczysław (National Centre for Nuclear Research)
Data-driven Genetic Algorithm in Bayesian estimation of the abrupt atmospheric contamination
Annals of Computer Science and Information Systems, 2014, vol. 2, s. 519 - 527, rys., tab., bibliogr. 21 poz.
Słowa kluczowe
Algorytmy genetyczne, Zanieczyszczenie powietrza, Estymacja bayesowska
Genetic algorithms, Air pollution, Bayesian estimation
We have applied the methodology combining Bayesian inference with Genetic algorithm (GA) to the problem of the atmospheric contaminant source localization. The algorithms input data are the on-line arriving information about concentration of given substance registered by sensors' network. To achieve rapid-response event reconstructions the fast-running Gaussian plume dispersion model is adopted as the forward model. The proposed GA scan 5-dimensional parameters' space searching for the contaminant source coordinates (x,y), release strength (Q) and atmospheric transport dispersion coefficients. Based on the synthetic experiment data the GA parameters, best suitable for the contamination source localization algorithm performance were identified. We demonstrate that proposed GA configuration can successfully point out the parameters of abrupt contamination source. Results indicate the probability of a source to occur at a particular location with a particular release strength. We propose the termination criteria based on the probabilistic requirements regarding the parameters' value.(original abstract)
Pełny tekst
  1. Allen C.T, Haupt S. E., (2006): Source Characterization with a Genetic Algorithm-Coupled Dispersion-Backward Model Incorporating SCIPUFF, Department of Meteorology, The Pennsylvania State University, doi : 10.1175/JAM2459.1.
  2. Borysiewicz M., A.Wawrzynczak, P.Kopka,(2012): Bayesian-Based Methods for the Estimation of the Unknown Model's Parameters in the Case of the Localization of the Atmospheric Contamination Source, Foundations of Computing and Decision Sciences, 37, 4, 253-270, doi : 10.2478/v10209 - 011 - 0014 - 9.
  3. Borysiewicz, M., Wawrzynczak A.,Kopka P,(2012):Stochastic algorithm for estimation of the model's unknown parameters via Bayesian inference, Proceedings of the Federated Conference on Computer Science and Information Systems pp. 501-508, IEEE Press, Wroclaw, ISBN 978-83-60810-51-4.
  4. Edited by Rustem Popa, (2012) Genetic Algorithms in Applications, ISBN 978-953-51-0400-1, InTech, Chapters published March 21, 2012 under CC BY 3.0 license doi : 10.5772/2675
  5. Eiben A . E., R. Hinterding and Z. Michalewicz, (1999): Parameter Control in Evolutionary Algorithms", IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, doi : 10.1109/4235.771166
  6. Fleming P. J., Fleming P. J., Purshouse R. C., and Purshouse R. C., (2001): Genetic Algorithms In Control Systems Engineering , In:Proceedings of the 12th IFAC World Congress, 383-390.
  7. Gelman, A., J. Carlin, H. Stern, and D. Rubin, (2003): Bayesian Data Analysis. Chapman & Hall/CRC, 668 pp.
  8. Gifford, F. A. Jr. (1960): Atmospheric dispersion calculation using generalized Gaussian Plum model, Nuclear Safety, 2(2):56-59,67-68
  9. Goldberg D. E., (2006): Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley Longman, London, 2006.
  10. Goodall R.M., Michail K., Whidborne J.F. Zolotas A.C, (2009): Optimised Configuration of Sensing Elements for Control and Fault Tolerance Applied to an Electro-Magnetic Suspension, PhD Thesis, Loughborough University, UK.
  11. Holland J. H., (1992): Adaptation in Natural and Artificial Systems, 2nd Edn. Cambridge, MIT Press, 1992.
  12. Johannesson, G. et al., (2005): Sequential Monte-Carlo based framework for dynamic data-driven event reconstruction for atmospheric release., Proc. of the Joint Statistical Meeting, Minneapolis, MN, American Statistical Association and Cosponsors, 73-80.
  13. Keats, A., E. Yee, and F.-S. Lien, (2007): Bayesian inference for source determination with applications to a complex urban environment. Atmos. Environ., 41, 465-479, doi : 10.1016/j.atmosenv.2006.08.044.
  14. Pasquill, F. (1961): The estimate of the dispersion of windborne material, Meteorol Mag.,90, 1063,: 33-49
  15. Pudykiewicz, J. A., (1998): Application of adjoint tracer transport equations for evaluating source parameters. Atmos. Environ., 32, 303-3050, doi : 10.1016/S1352 - 2310(97)00480 - 9.
  16. Roeva O., Stefka Fidanova, Marcin Paprzycki , Influence of the Population Size on the Genetic Algorithm Performance in Case of Cultivation Process Modelling , Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, pages 371 - 376, 2013
  17. Saremi A., T. Y. E. Mekkawy and G. G. Wang, (2007) Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments", International Journal of Operations Research, Vol. 4, No. 4, 206-219.
  18. Sykes, R.I., (1998): PC-SCIPUFF Version 1.2PD Technical Documentation. ARAP Report No. 718. Titan Corporation,
  19. Turner D. Bruce, (1994): Workbook of Atmospheric Dispersion Estimates, Lewis Publishers, USA
  20. Wawrzynczak A et al. (2014): Recognition of the atmospheric contamination source localization with the Genetic Algorithm, Studia Informatica, UPH, Siedlce (submitted)
  21. Wawrzynczak A., P. Kopka, M. Borysiewicz, (2014): Sequential Monte Carlo in Bayesian assessment of contaminant source localization based on the distributed sensors measurements, Lecture Notes in Computer Sciences 8385, PPAM 2013, Part II, ch.38, 407-417 , doi : 10.1007/978-3 - 642 - 55195 - 638.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu