BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Burdescu Dumitru Dan (University of Craiova, Romania), Stanescu Liana (University of Craiova, Romania), Brezovan Marius (University of Craiova, Romania), Spahiu Cosmin Stoica (University of Craiova, Romania)
Tytuł
Efficient Volumetric Segmentation Method
Źródło
Annals of Computer Science and Information Systems, 2014, vol. 2, s. 659 - 668, rys., tab., bibliogr. 29 poz.
Słowa kluczowe
Analiza obrazu, Segmentacja, Algorytmy
Image analysis, Segmentation, Algorithms
Uwagi
summ.
Abstrakt
In this paper we extend our previous work for planar images by adding a new step in the volumetric segmentation algorithm that allows us to determine regions closer to it. There are huge of papers for planar images and segmentation methods and most of them are graph-based for planar images and very few papers for volumetric segmentation methods. However, even if image segmentation is a heavily researched field, extending the algorithms to spatial has been proven not to be an easy task. A true volumetric segmentation remains a difficult problem to tackle due to the complex nature of the topology of spatial objects, the huge amount of data to be processed and the complexity of the algorithms that scale with the new added dimension. The problem of partitioning images into homogenous regions or semantic entities is a basic problem for identifying relevant objects. Visual segmentation is related to some semantic concepts because certain parts of a scene are pre-attentively distinctive and have a greater significance than other parts. A number of approaches to segmentation are based on finding compact regions in some feature space. A recent technique using feature space regions first transforms the data by smoothing it in a way that preserves boundaries between regions. The key to the whole own algorithm of volumetric segmentation is the honeycomb cells. The pre-processing module is used mainly to blur the initial RGB spatial image in order to reduce the image store and to make algorithms to be efficient. Then the volumetric segmentation module creates virtual cells of prisms with tree-hexagonal structure defined on the set of the image voxels of the input spatial image and a volumetric grid graph having tree-hexagons as cells of vertices. Early graph-based methods use fixed thresholds and local measures in finding a volumetric segmentation.(original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Abramowitz M., Stegun I.A. Handbook of Mathematical Functions. New York: Dover Publications, 1964
  2. Arbelaez P., Fowlkes C., and Martin D. The Berkeley segmentation dataset and benchmark. Computer Science Department, Berkeley University. [Online]. Available: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
  3. Arbelaez P., Pont-Tuset J., Barron J., Marqués F., and Malik J., Multiscale Combinatorial Grouping, in Computer Vision and Pattern Recognition (CVPR), 2014.
  4. Bennstrom, C., Casas, J., Binary-partition-tree creation using a quasi-inclusion criterion. In Proceedings of the Eighth International Conference on Information Visualization, London, UK, pp. 259-294, 2004.
  5. Brezovan M., Burdescu D., Ganea E., Stanescu L., An Adaptive Method for Efficient Detection of Salient Visual Object from Color Images. In Proceedings of the 20th International Conference on Pattern Recognition, Istambul, Turkey, pp. 2346-2349, 2010.
  6. Burdescu D., Brezovan M., Ganea E., Stanescu L., A new method for segmentation of images represented in a HSV color space. Lecture Notes in Computer Science, 5807, 606-616, 2009
  7. Comaniciu D., Meer P., Mean shift analysis and applications. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, pp. 1197-1203, 1999.
  8. Comaniciu D., Meer P., Robust analysis of feature spaces: color image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603-619, 2002.
  9. Cooper M., The tractibility of segmentation and scene analysis. International Journal of Computer Vision, 30(1), 27-42, 1998
  10. Cormen T., Leiserson C., Rivest R., Introduction to algorithms, Cambridge, MA: MIT Press, 1990.
  11. Estrada F. J. and Jepson A. D., "Benchmarking image segmentation algorithms," International Journal of Computer Vision, vol. 85, no. 2, pp. 167-181, Nov. 2009. [Online]. Available: http://dx.doi.org/10.1007/s11263-009-025
  12. Felzenszwalb P., Huttenlocher W., Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167-181, 2004.
  13. Gabow H.N., Galil Z., Spencer T., Tarjan R.E., Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica, 6, pg. 109-122., 1986
  14. Gdalyahu Y., Weinshall D., Werman M., Self-organization in vision: stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10), 1053-1074, 2001.
  15. Gijsenij A., Gevers T., Lucassen M., A perceptual comparison of distance measures for color constancy algorithms, European Conference on Computer Vision, Marseille, France, pp. 208-221, 2008.
  16. Gonzales R., Wintz P., Digital Image Processing. Reading, MA: Addison-Wesley, 1987.
  17. Guigues L., Herve L., Cocquerez L. P., The hierarchy of the cocoons of a graph and its application to image segmentation. Pattern Recognition Letters, 24(8), 1059-1066, 2003.
  18. Haxhimusa Y., Ion A., and Kropatsch W., Evaluating graphbased segmentation algorithms, in Proceedings of the 18th Internation Conference on Pattern Recognition, 2006.
  19. Huang R., Pavlovic V., and Metaxas D. N., A tightly coupled region shape framework for 3d, in Medical Image Segmentation, IEEE International Symposium on Biomedical Imaging (ISBI06), 2006.
  20. Jermyn I., Ishikawa H., Globally optimal regions and boundaries as minimum ratio weight cycles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(8), 1075-1088, 2001
  21. Malik J., Belongie S., Leung T., Shi J., Contour and texture analysis for image segmentation. International Journal of Computer Vision, 43(1), 7-27, 2001.
  22. Martin D. An Empirical Approach to Grouping and Segmentation. PhD thesis, University of California, Berkeley, 2002.
  23. Martin D., Fowlkes C., Tal D., and Malik J., "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics," in In Proceedings of International Conference on Computer Vision, no. 2, pp. 416-432, 2001.
  24. Middleton L., Sivaswamy J., Hexagonal Image Processing; A Practical Approach (Advances in Pattern Recognition). Springer-Verlag, 2005.
  25. Powers D., Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation, Journal of Machine Learning Technologies, vol. 2, no. 1, pp. 37-63, 2011.
  26. Shi J., Malik J., Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 885-905, 2000.
  27. Silberman P. K. N., Hoiem D. and Fergus R., Indoor segmentation and support inference from RGBD images, in ECCV, 2012
  28. Stanescu L., Burdescu D., Brezovan M., Mihai CR. G., Creating New Medical Ontologies for Image Annotation, Springer-Verlag New York Inc. ISBN 13: 9781461419082, ISBN 10: 1461419085", 2011
  29. Urquhar R., Graph theoretical clustering based on limited neighborhood sets. Pattern Recognition, 15(3), 173-187, 1982.
Cytowane przez
Pokaż
ISSN
2300-5963
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu