BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Fabijańska Anna (Lodz University of Technology, Poland)
Tytuł
Gaussian-Based Approach to Subpixel Detection of Blurred and Unsharp Edges
Źródło
Annals of Computer Science and Information Systems, 2014, vol. 2, s. 641 - 650, rys., bibliogr. 31 poz.
Słowa kluczowe
Analiza obrazu, Obrazy cyfrowe, Modele matematyczne
Image analysis, Digital images, Mathematical models
Uwagi
summ.
Abstrakt
In this paper the problem of edge detection with subpixel accuracy is considered. In particular, the precise detection of significantly blurred edges is regarded. A new method for subpixel edge detection is introduced. The method attempts to reconstruct image gradient function at the edge using the Gaussian function. The results of subpixel edge detection in the artificially created and the real images obtained by the introduced approach are presented and compared with the results of previously proposed methods. In particular, the moment based methods, the gravity center method and the parabola fitting method are considered in the comparison. The presented results prove the robustness of the introduced approach against the averaging and the Gaussian blur. Additionally, the comparison shows, that the introduced approach outperforms the existing state-of-art methods for subpixel edge detection.(original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Bailey, D. G.: 'Sub-pixel profiling', Proc. 5th Int. Conf. Information Communications and Signal Processing, Bangkok, Thailand , December 2005, pp. 1311-1315, http://dx.doi.org/10.1109/ICICS.2005.1689268
  2. Bie, H. X., and Liu, C. Y.: 'Edge-directed sub-pixel extraction and still image super-resolution', Proc. 2nd Int. Congress Image and Signal Processing, Tianjin, China, October 2009, pp. 1-4, http://dx.-doi.org/10.1109/CISP.2009.5301055
  3. Bin, T. J., Lei, A., Jiwen, C., Wenjing, K., and Dandan, L.: 'Subpixel edge location based on orthogonal Fourier-Mellin moments', Image Vision Comput., 2008, 26, (4), pp. 563-569, http://dx.doi.org/10.1016/j.imavis.2007.07.003
  4. Breder, R., Estrela, V., V., and de Assis, J. T.: 'Sub-pixel accuracy edge fitting by means of B-spline', Proc. IEEE Int. Workshop Multimedia Signal Processing, Rio de Janeiro, Brazil, October 2009, pp. 1-5, http://dx.doi.org/10.1109/MMSP.2009.5293265
  5. Fabijańska, A., and Sankowski, D.: 'Computer vision system for high temperature measurements of surface properties', Mach. Vision Appl., 2009, 20, (6), pp. 411-421, http://dx.doi.org/ 10.1007/s00138-008-0135-1
  6. Gebäck, T., and Koumoutsakos, P.: 'Edge detection in microscopy images using curvelets', BMC Bioinformatics, 2009, 10, (75), available on-line at: http://www.biomedcentral.com/1471-2105/10/75, http://dx.doi.org/10.1186/1471-2105-10-75
  7. Ghosal, S., and Mehrotra, R.: 'Orthogonal moment operators for subpixel edge detection', Pattern Recogn. Lett., 1993, 26, (2), pp. 295-305, http://dx.doi.org/10.1016/0031-3203(93)90038-X
  8. Gonzalez, R. C., and Woods, R. E.: 'Digital image processing', Prentice Hall, 2007
  9. Ji, X., Wang, K., and Wei, Z.: 'Structured light encoding research based on sub-pixel edge detection', Proc. Int. Conf. Information Engineering and Computer Science, Wuhan, China, December 2009, pp. 1-4, http://dx.doi.org/10.1109/ICIECS.2009.5365408
  10. Jin, J. S.: 'An adaptive algorithm for edge detection with subpixel accuracy in noisy images', Proc. IAPR Workshop on Machine Vision Applications, Tokyo, Japan, November 1990, pp. 249-252
  11. Kisworo, M., Venkatesh, S., and West, G.: '2-D edge feature extraction to subpixel accuracy using the generalized energy approach', Proc. IEEE Region 10th Int. Conf. EC3-Energy, Computer, Communication and Control Systems, New Delhi, India, August 1991, pp. 344-348, http://dx.doi.org/10.1109/TENCON.1991.753898
  12. Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E.: 'Convergence properties of the Nelder-Mead simplex method in low dimensions', SIAM J. Optim., 1998, 9, (1), pp. 112-147, http://dx.-doi.org/10.1137/S1052623496303470
  13. Liu, C., Xia, Z., Niyokindi, S., Pei, W., Song, J., and Wang, L.: 'Edge location to sub-pixel value in color microscopic images', Proc. Int. Conf. Intelligent Mechatronics and Automation, Chengdu, China, August 2004, pp. 548-551, http://dx.doi.org/10.1109/ICIMA.2004.1384255
  14. Lyvers, E. P., Mitchell, O. R., Akey M. L., and Reeves, A. P.: 'Subpixel measurements using a moment-based-edge operator', IEEE Trans. PAMI, 1989, 11, (12), pp. 1293-1309, http://dx.doi.org/10.1109/34.41367
  15. Machuca, R., and Gilbert, A. L.: 'Finding edges in noisy scenes', IEEE Trans PAMI, 1981, 3, pp. 103-111, http://dx.doi.org/10.1109/TPAMI.1981.4767057
  16. MacVicar-Whelan, P. J., and Binford, T. O.: 'Intensity discontinuity location to subpixel precision', Proc. DARPA Image Understanding Workshop, USA, April 1981, pp. 752-754
  17. MacVicar-Whelan, P. J., and Binford, T. O.: 'Line finding with subpixel precision', Proc. DARPA Image Understanding Workshop, USA, April 1981, pp. 26-31, http://dx.doi.org/10.1117/12.965750
  18. Nevtia, R., and Babu, K.: 'Linear feature extraction and description', Comput. Vision Graph., 1980, 13, (3), pp. 257-269, http://dx.doi.org/10.1016/0146-664X(80)90049-0
  19. Ridler, T., and Calvard, S.: 'Picture thresholding using an iterative selection method', IEEE Trans. Syst. Man Cyb., 1978, 8, pp. 630-632, http://dx.doi.org/10.1109/TSMC.1978.4310039
  20. Rocket, P.: 'The accuracy of sub-pixel localization in the Canny edge detector', Proc. British Machine Vision Conf., Nottingham, UK, September 1999, http://www.bmva.ac.uk/bmvc/1999/papers/39.pdf, http://dx.doi.org/10.5244/C.13.39
  21. Sankowski, D., Strzecha, K., and Jeżewski, S.: 'Digital image analysis in measurement of surface tension and wettability angle', Proc. Int. Conf. Modern Problems of Telecommunications, Computer Science and Engineers Training, Lviv-Slavsko, Ukraine, February 2000, pp. 129-130
  22. Shan, Y., and Boon, G.W.: 'Sub-pixel location of edges with nonuniform blurring: a finite closed-form approach', Image Vision Comput., 2000, 18, (13), pp. 1015-1023 http://dx.doi.org/10.1016/S0262-8856(00)00040-8
  23. Sheng, Y., and Shen, L.: 'Orthogonal Fourier-Mellin moments for invariant pattern recognition', J. Opt. Soc. Am., 1994, 11, (6), pp. 1748-1757, http://dx.doi.org/10.1364/JOSAA.11.001748
  24. Sidiropoulos, N. D., Baras, J. S., and Berenstein, C. A.: 'Discrete random sets: an inverse problem, plus tools for the statistical inference of the discrete boolean model', Proc. SPIE, 1992, 1769, pp. 32-43, http://dx.doi.org/10.1117/12.60630
  25. Stanke, G., Zedler, L., Zorn, A., Weckend, F., and Weide, H. G.: 'Sub-pixel accuracy by optical measurement of large automobile components', Proc. 24th Conf. of IEEE Industrial Electronics Society, Aachen, Germany, August-September 1998, pp. 2431-2433, http://dx.doi.org/10.1109/IECON.1998.724107
  26. Tabatabai, A. J., and Mitchell, O. R.: 'Edge location to sub-pixel values in digital imagery', IEEE Trans. PAMI, 1984, 6, (2), pp. 188-20l, http://dx.doi.org/10.1109/TPAMI.1984.4767502
  27. Tamrakar, A., and Kima B. B.: 'Combinatorial grouping of edges using geometric consistency in a lagrangian framework', Proc. Conf. Computer Vision and Pattern Recognition Workshop, New York, USA, June 2006, pp. 189, http://dx.doi.org/10.1109/CVPRW.2006.56
  28. Xu, G. S.: 'Linear array CCD image sub-pixel edge detection based on wavelet transform', Proc. 2nd Int. Conf. Information and Computing Science, Manchester, UK, May 2009, pp. 204-206, http://dx.doi.org/10.1109/ICIC.2009.160
  29. Xu, G. S.: 'Sub-pixel edge detection based on curve fitting', Proc. 2nd Int. Conf. Information and Computing Science, Manchester, UK, May 2009, pp. 373-375, http://dx.doi.org/10.1109/ICIC.2009.205
  30. Yao, Y., and Ju, H.: 'A sub-pixel edge detection method based on Canny operator', Proc. 6th Int. Conf. Fuzzy Systems and Knowledge Discovery, Tianjin, China, August 2009, pp. 97-100, http://dx.doi.org/10.1109/FSKD.2009.573
  31. Ye, J., Fu, G., and Poudel, U.P.: 'High-accuracy edge detection with Blurred Edge Model', Image Vision Comput., 2005, 23, (5), pp. 453-467, http://dx.doi.org/10.1016/j.imavis.2004.07.007
Cytowane przez
Pokaż
ISSN
2300-5963
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu