BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Williamson David (University of Canberra, Australia)
Tytuł
Models, Metaphors and Symbols for Information and Knowledge Systems
Źródło
Journal of Entrepreneurship, Management and Innovation (JEMI), 2014, vol. 10, nr 1, s. 79-107, tab., rys., bibliogr. 54 poz.
Tytuł własny numeru
Knowledge Management Special Issue : Connecting Theory and Practice
Słowa kluczowe
Wiedza, Zarządzanie wiedzą, Kapitał intelektualny, Uczenie się, Systemy zarządzania wiedzą
Knowledge, Knowledge management, Intellectual capital, Studying, Knowledge management system
Uwagi
streszcz., summ.
Abstrakt
Przegląd literatury wskazuje na to, że Dane, Informacje i Wiedza są wciąż umieszczane w hierarchicznej konstrukcji, gdzie informacje są bardziej cenione niż dane i mogą być przetworzone w cenną wiedzę. Mądrość w dalszym ciągu jest dodawana do tego modelu, co zaciemnia całą kwestię. Model ten ogranicza naszą zdolność do logicznego myślenia o tym jak i dlaczego tworzymy systemy zarządzania wiedzą do wspierania i udoskonalania procesów, zadań czy projektów wymagających znacznej wiedzy. Artykuł ten próbuje podsumować rozwój hierarchii Dane-Informacje-Wiedza-Mądrość, przedstawia jego krytykę i proponuje bardziej logiczną (i dokładną) konstrukcję obejmującą składniki kapitału intelektualnego, która może być zastosowana przy tworzeniu i zarządzaniu Systemami Zarządzania Wiedzą. (abstrakt oryginalny)

A literature search indicates that Data, Information and Knowledge continue to be placed into a hierarchical construct where it is considered that information is more valuable than data and that information can be processed into becoming precious knowledge. Wisdom continues to be added to the model to further confuse the issue. This model constrains our ability to think more logically about how and why we develop knowledge management systems to support and enhance knowledge intensive processes, tasks or projects. This paper seeks to summarise development of the Data-Information-Knowledge-Wisdom hierarchy, explore the extensive criticism of it and present a more logical (and accurate) construct for the elements of intellectual capital when developing and managing Knowledge Management Systems. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Ackoff, R.L. (1989). From Data to Wisdom. Journal of Applied Systems Analysis, 16, 3-9.
  2. Alavi, M., and Leidner, D. E. (1999). Knowledge management systems: issues, challenges, and benefits. Communications of the AIS, l(2es), 1.
  3. Banks, C. (2014). The Knowledge Bucket (Wiki) Retrieved from http:// knowledgebucket.wikispaces.com/.
  4. Bellinger, G., Castro, D., Mills, A. (2004). Data, Information, Knowledge, & Wisdom. Retrieved from http://www.systems-thinking.org/dikw/dikw.htm.
  5. Berry, J.F. and Cook, C.M. (1976). Managing Knowledge as a Corporate Resource. Department of Defence: Washington, DC.
  6. Box, G.E.P., and Draper, N.R., (1987). Empirical Model Building and Response Surfaces. John Wiley & Sons: New York, NY.
  7. Brodie, I., and Brodie, L. (2009). a knowledge-information-data concept model for engineering education. Australasian Journal of Engineering Education, 15(3), 137-144.
  8. Choo, C.W. (2005). The knowing organization: how organizations use information to construct meaning, create knowledge and make decisions, Published to Oxford Scholarship Online: September 2007.
  9. Churchman, C.W. (1971). The Design of Inquiring Systems: Basic Concepts of Systems and Organisations. Benis Books: New York.
  10. Cleveland H. (1982). Information as Resource. The Futurist, December, 34- 39.
  11. Coffey, A., and Atkinson, P. (1996). Making sense of qualitative data: Complementary research strategies. Sage.
  12. Davenport, T.H. and Prusak, L. (2000). Working Knowledge: How Organizations Manage What They Know. Harvard Business School Press, Boston: MA, USA. "
  13. Debons, A., Home, E., Cronenweth, S. (1988). Information Science: An Integrated View. Boston: G.K. Hall.
  14. DIKW Academy. (2013). Retrieved from http://www.dikw- academy.nl/.
  15. Drucker P. (1995). The Post-Capitalist Executive. Managing in a Time of Great Change. Penguin: NY.
  16. Drucker, P. (2011). The age of discontinuity: Guidelines to our changing society. Transaction Publishers.
  17. Eliot, T.S. (1934). The Rock, Faber & Faber.
  18. Esterbrook, S. (2012). What is Climate Informatics? Retrieved form: http:// www.easterbrook.ca/steve/2012/09/what-is-climate-informatics/.
  19. Faucher, J.B., Everette, A.M., & Lawson, R. (2008). Reconstituting knowledge management. Journal of Knowledge Management, 12(3), 3-16.
  20. Firestone, J.M. (2001). Key Issues In Knowledge Management. Journal Of The KM CI, 1(3).
  21. Frank, Ulrich. (2001). Knowledge Management Systems: Essential Requirements and Generic Design Patterns. Institute for Information Systems Research, University of Koblenz. Retrieved from http://www.unikoblenz.de/~iwi/ publicfiles/PublikationenFrank/ISE2001.pdf (Reprinted from Proceedings of the International Symposium on Information Systems and Engineering, ISE'2001. Las Vegas: CSREA Press, 2001, pp. 114-121).
  22. Frické, M. (2009). The knowledge pyramid: a critique of the DIKW hierarchy. Journal of Information Science, 96-131, Retrieved from http://arizona. o pe n re pository. com/a rizona/bitst ream/10150/105670/1/The_ Knowledge_Pyramid_DList.pdf.
  23. Henry, N. (1974). Knowledge management: a new concern for public administration. Public Administration Review, 34(3), 189-196.
  24. Hey, J. (2004). The data, information, knowledge, wisdom chain: the metaphorical link. Intergovernmental Oceanographic Commission.
  25. Ingebrigtsen, N. (2007).The Differences Between Data, Information and Knowledge. Retrieved from http://www.infogineering.net/data- information-knowledge.htm.
  26. Jennex, M.E. (2009). Re-visiting the knowledge pyramid. System Sciences. HICSS'09.42nd Hawaii International Conference. IEEE.
  27. Kirby, B. (2014). National Press Club: Dr Barry Kirby, National Press Club, Canberra. Retrieved from http://www.abc.net.au/news/2014-05-07/ national-press-club-dr-barry-kirby/5436988.
  28. Klein, G. (1999). Sources of Power: How People Make Decisions. Cambridge, MA: MIT Press.
  29. Lambe, P. (2011). The unacknowledged parentage of knowledge management. Journal of Knowledge Management, 15(2), 175-197.
  30. Lambe, P. (2012). in the Knowledge Management for Development (KM4Dev). Retrieved from http://wiki.km4dev.org/DIKW_model.
  31. Legesse, B, Price B.H., and Murray E.D. (2012). Brain-Behavior Relations. In: Encyclopedia of Human Behavior, 2nd Edition. Edited by: Ramachandran, V. S. Academic Press.
  32. Liew, A. (2007). Understanding data, information, knowledge and their interrelationships. Journal of Knowledge Management Practice, 8(2).
  33. McDermott, R. (2000). Why information technology inspired but cannot deliver knowledge management. Knowledge and communities, 41(A), 21-35.
  34. McDonald, C. (2014). Interview with Prof. Craig McDonald at University of Canberra, 12 March 2014 by D.J. Williams.
  35. McDonald, C. and Williams, D. (2011). Developing a KMS, University of Canberra. Retrieved from http://www.slidefinder.net/d/designing_a_ kms_v2/32955764.
  36. Moore, M. (2014). email from Matt Moore to david.j.williams@canberra. edu.au dated 6 May 2014.
  37. Nürnberger, A., and Wenzel, C. (2011). Wisdom-the blurry top of human cognition in the DIKW- model? Proceedings of the EUSFLAT conference, Aix-Les-Bains, France (Vol. 1, pp. 584-591).
  38. Pigott, D., Hobbs, V.J., and Gammack, J. (2005). The noetic prism. Computing and Information Systems, 9(2), 78-88.
  39. Popper, K. (1963). Conjectures and Refutations. The Growth of Scientific Knowledge. London and New York.
  40. Popper, K. (1979). Three worlds. The Tanner Lecture on Human Values, Ann Arbor: University of Michigan.
  41. Pór, G. (1997) Designing knowledge ecosystems for Communities of Practice. Retrieved from http://www.co-i-l.com/coil/knowledge-garden/dkescop/ dwcurve.shtml.
  42. Rowley, J. (2007). The wisdom hierarchy: representations of the DIKW hierarchy. Journal of Information Science, 33(2), 163- 180.
  43. Sauerwein, E., Bailom, F., Matzler, K., and Hinterhuber, H.H. (1996, February). The Kano model: How to delight your customers. International Working Seminaron Production Economics (Vol. 1, pp. 313-327).
  44. Seemann, P., DeLong, D., Stukey, S., and Guthrie, E. (2000). Building intangible assets:a strategic framework for investing in intellectual capital. Knowledge management: Classic and contemporary works. Retrieved from http:// www.smartworkforcestrategies.com/Portals/0/Published%20Articles/ DeLong-BuildinglntangibleAssets-FrameworkForlntellCapital-BookChp. pdf.
  45. Sharma, N. (2004). The Origin of the Data Information Knowledge Wisdom Hierarchy Retrieved from https://docs.google.com/file/ d/0BzMm6cRs9IE6YW5Scm5WWGR6RDQ/edit.
  46. Simon, Herbert A. (1947). Administrative Behavior: a Study of Decision-Making Processes in Administrative Organization. New York: Macmillan.
  47. Tarpey, T. (2009). All Models are Right...Most are Useless. Retrieved from http://andrewgelman.com/wp-content/uploads/2012/03/tarpey.pdf.
  48. Tiwana, A. (2001). The Essential Guide to Knowledge Management -E-Business and CRM Applications. Prentice-Hall, Upper Saddle River: NJ, USA.
  49. Van Loon, H. (2014, 30 April). From data to wisdom, actKM discussion list. Retrieved from http://actkm.org/mailman/listinfo/actkm_actkm.org by subscribing to the list and accessing the archives.
  50. Wenger, E. (1998). Communities of practice: Learning as a social system. Systems Thinker, 9(5), 2-3.
  51. Wiig,K.M. (1997). Integrating intellectual capital and knowledge management. Long Range Planning, 30(3), 399-405.
  52. Zaharova, S., and Galandere-Zile, I. (2002). The impact of the knowledge management to business processes. In International Conference: Traditional and Innovative in the Lasting Development of Society, Rezekne, Latvia, 298-304. Rezekne: Rezekne Higher Education Institution.
  53. Zeleny, Milan (1987). Management support systems: Towards integrated knowledge management. Human Systems Management, 7(1), 59-70.
  54. Zins, C. (2007). Conceptual approaches for defining data, information, and knowledge. Journal of the American Society for Information Science and Technology, 58{4), 479-493.
Cytowane przez
Pokaż
ISSN
2299-7075
Język
eng
URI / DOI
http://dx.doi.org/10.7341/20141013
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu