BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Jaworski Jacek (Polish Academy of Sciences; Korea Institute of Science and Technology), Gawłowski Grzegorz (Cracow University of Technology, Poland)
Tytuł
Production and Properties of Composite Material Comprising Gd Multiscale Particles
Źródło
Management and Production Engineering Review, 2015, vol. 6, nr 1, s. 16-20, rys., bibliogr. 21 poz.
Słowa kluczowe
Materiałoznawstwo, Właściwości fizykochemiczne, Proces produkcji
Materials science, Physicochemical property, Production process
Uwagi
summ.
Abstrakt
The article presents a novel method of producing Gd particles and preserving them from oxidation. The particles were produced in liquid paraffin by means of AC electric discharge and stored in the solidified paraffin. After seven months, the surface of the Gd was found to be exempt of oxidation. Moreover a composite material formed from mixing paraffin with Gd particles was conductive and magnetic and also presented photovoltaic effect. This method is a promising means of producing, at an industrial scale, particles from materials extremely sensitive to environment such as rare earth materials. Also the new material consisted of Gd particles in a paraffin matrix can find applications in many branches of industry. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Rau C., Eichner S., Evidence for ferromagnetic order at gadolinium surfaces above the bulk Curie temperature, Phys. Rev. B, 34, 6347-6350, 1986.
  2. Rau C., Robert M., Surface Magnetization of Gd at the Bulk Curie Temperature, Phys. Rev. Lett., 58, 2714-2717, 1987.
  3. Pecharsky V.K., Gschneidner Jr. K.A. Magnetocaloric elect and magnetic refrigeration, JMMM, 200, 44-56, 1999.
  4. Yamamoto Y., Boron-gadolinium binary system as a magnetic resonance imaging boron carrier, Pure Appl. Chem., 75, 1343-1348, 2003.
  5. Thomsen H.S., Webb J.A.W., Contrast Media, Safety Issues and ESUR Guidelines, 2nd revised edition, Springer-Verlag Berlin Heildergerg, 2009.
  6. Board N., The complete technology book on detergents, National Institute of Industrial Researches, Dehli-7 (India), p. 102, 2003.
  7. Jaworski J., Fleury E., Sub-Micrometer Particles Produced by a Low-Powered AC Electric Arc in Liquids, JNN, 12, 1, 604-609, January 2012.
  8. Delaportas D., Svarnas P., Alexandrou I., Siokou A., Black K., Bradley J.W., γ -Al2O3 nanoparticle production by arc-discharge in water: in situ discharge characterization and nanoparticle investigation, J. Phys. D, 42, 245204, 2009.
  9. Ashkarran A.A., Irajizad A., Mahdavi S.M., Ahadin M.M., Nezhad M.R.H., Rapid and efficient synthesis of colloidal gold nanoparticles by arc discharge method, Appl. Phys. A, 96, 423-428, 2009.
  10. Kawaguchi K., Jaworski J., Ishikawa Y., Sasaki T., Koshizaki N., Preparation of gold/iron-oxide composite nanoparticles by a unique laser process in water, JMMM, 310, 2369-2371, 2007.
  11. Nelson J., The Physics of Solar Cells, Imperial College Press, London, p. 2, 2004.
  12. Frenkel J., On Pre- Breakdown Phenomena in Insulators and Electronic Semi-Conductors, Phys. Rev., 54, 647-648, 1938.
  13. Mafuné F., Kohno J., Takeda Y., Kondow T., Sawabe H., Formation and size control of silver nanoparticles by laser ablation in aqueous solution, Journal of Physical Chemistry B, 104, 39, 9111-9117, 2000.
  14. Mafune F., Kohno Y., Takeda Y., Kondow T., Formation of stable platinum nanoparticles by laser ablation in water, The Journal of Physical Chemistry B, 107, 18, 4218-4223, 2003.
  15. El-Sayed M.A., Some interesting properties of metals confined in time and nanometer space of different shape, Accounts of Chemical Research, 34, 4, 257-264, 2001.
  16. Link S., El-Sayed Mostafa A., Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles, J. Phys. Chem. B, 103, 4212-4217, 1999.
  17. Link S., El-Sayed Mostafa A., Shape and size dependence of radiative, non- radiative and photothermal properties of gold nanocrystals, Int. Reviews in Physical Chemistry, 19, 3, 409-453, 2000.
  18. Igashira M., Kitazawa H, Yamamuro N., A heavy shield for the gamma-ray detector used in fast neutron experiments, Nucl. Instr. Meth. Phys. Res. A., 245, 432-437, 1986.
  19. IAEA Training Course Series No. 16, Neutron and gamma probes: Their use in agronomy, Soil and Water Management & Crop Nutrition Section International Atomic Energy Agency, Vienna, 2002.
  20. Rhodes R., The Making of the Atomic Bomb, New York, NY, Simon and Schuster 1986.
  21. Sowerby M.G., Forrest R.A., Attenuation of fast neutrons: neutron moderation and diffusion, National Physical Laboratory, UK, Retrieved December 2, 2007.
Cytowane przez
Pokaż
ISSN
2080-8208
Język
eng
URI / DOI
http://dx.doi.org/10.1515/mper-2015-0003
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu