BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Choi Hankyeung (Ministry of Strategy and Finance, Republic of Korea), Leatham David J. (Texas A&M University, Kingsville, USA), Sukcharoen Kunlapath (Texas A&M University, Kingsville, USA)
Oil Price Forecasting Using Crack Spread Futures and Oil Exchange Traded Funds
Contemporary Economics, 2015, vol. 9, nr 1, s. 29-44, rys., tab., bibliogr. 24 poz.
Słowa kluczowe
Ceny ropy naftowej, Prognozowanie cen, Model GARCH, Fundusze ETF
Oil prices, Prediction of prices, GARCH model, Exchange Traded Fund (ETF)
Given the emerging consensus from previous studies that crude oil and refined product (as well as crack spread) prices are cointegrated, this study examines the link between the crude oil spot and crack spread derivatives markets. Specifically, the usefulness of the two crack spread derivatives products (namely, crack spread futures and the ETF crack spread) for modeling and forecasting daily OPEC crude oil spot prices is evaluated. Based on the results of a structural break test, the sample is divided into pre-crisis, crisis, and post-crisis periods. We find a unidirectional relationship from the two crack spread derivatives markets to the crude oil spot market during the post-crisis period. In terms of forecasting performance, the forecasting models based on crack spread futures and the ETF crack spread outperform the Random Walk Model (RWM), both in-sample and out-of-sample. In addition, on average, the results suggest that information from the ETF crack spread market contributes more to the forecasting models than information from the crack spread futures market.(original abstract)
Pełny tekst
  1. Asche, F., Gjolberg, O., & Völker, T. (2003). Price relationships in the petroleum market: an analysis of crude oil and refined product prices. Energy Economics, 25 (3), 289-301.
  2. Bollerslev, T., Engle, R. F., & Wooldridge, J. M. (1988). A capital asset pricing model with time-varying covariances. Journal of Political Economy, 96 (1), 116-131.
  3. Chinn, M. D., & Coibion, O. (2014). The predictive content of commodity futures. Journal of Futures Markets, 34 (7), 607-636.
  4. Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13 (3), 253-265.
  5. Edwards, F. R, & Ma, C. (1992). Futures and options. New York, NY: McGraw-Hill.
  6. Engle, R. F. (2002). Dynamic conditional correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business and Economic Statistics, 20 (3), 339-350.
  7. Engle, R. F., & Granger, C. W. J. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica, 55 (2), 251-276.
  8. Gjolberg, O., & Johnsen, T. (1999). Risk management in the oil industry: can information on long-run equilibrium prices be utilized? Energy Economics, 21 (6), 517-527.
  9. Haigh, M. S., & Holt, M. T. (2002). Crack spread hedging: accounting for time-varying volatility spillovers in the energy futures market. Journal of Applied Econometrics, 17 (3), 269-289.
  10. Heinkel, R., Howe, M., & Hughes, J. S. (1990). Commodity convenience yields as an option profit. Journal of Futures Markets, 10 (5), 519-533.
  11. Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12 (2-3), 231-234.
  12. Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian Vector Autoregressive Models. Econometrica, 59 (6), 1551- 1580.
  13. Kaldor, N. (1939). Speculation and economic stability. Review of Economic Studies, 7 (1), 1-27.
  14. Kocagil, A. E. (2004). Optionality and daily dynamics of convenience yield behavior: an empirical analysis. The Journal of Financial Research, 27 (1), 143-158.
  15. Kroner, K. F., & Sultan, J. (1993). Time-varying distributions and dynamic hedging with foreign currency futures. Journal of Financial and Quantitative Analysis, 28 (4), 535-551.
  16. Lanza, A., Manera, M., & Giovannini, M. (2005). Modeling and forecasting co-integrated relationships among heavy oil and product prices. Energy Economics, 27 (6), 831-848.
  17. Lean, H. H., McAleer, M., & Wong, W. K. (2010). Market efficiency of oil spot and futures: a mean-variance and stochastic dominance approach. Energy Economics, 32 (5), 979-986.
  18. Ma, C. (1989). Forecasting efficiency of energy futures prices. Journal of Futures Markets, 9 (5), 393-419.
  19. Murat, A., & Tokat, E. (2009). Forecasting oil price movements with crack spread futures. Energy Economics, 31 (1), 85-90.
  20. Serletis, A. (1994). A co-integration analysis of petroleum futures prices. Energy Economics, 16 (2), 93-97.
  21. U.S. Energy Information Administration. (2014, May 6). What drives crude oil prices? Retrieved from
  22. Verleger, P. K. (1982). The determinants of official OPEC crude oil prices. Review of Economics and Statistics, 64 (2), 177-183.
  23. Verleger, P. K. (2011). The margin, currency, and the price of oil. Business Economics, 46 (2), 71-82.
  24. Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business and Economic Statistics, 10 (3), 251-270.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu