BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Singh Ankita, Datta Saurav, Mahapatra Siba Sankar
Application of a Fuzzy Inference System for the Optimization of Material Removal Rate and Multiple Surface Roughness Characteristics in the Machining of GFRP Polyester Composites
Decision Making in Manufacturing and Services, 2013, vol. 7, nr 1/2, s. 19-42, tab., rys., bibliogr. 36 poz.
Słowa kluczowe
Systemy rozmyte, Polimery, Materiałoznawstwo, Wyniki badań
Fuzzy systems, Polymers, Materials science, Research results
This paper presents a multi-objective extended optimization methodology applied in the machining of a randomly oriented GFRP rod. Design of Experiment (DOE) has been selected based on a L9 orthogonal array design with varying process control parameters like: spindle speed, feed rate and depth of cut. Multiple surface roughness parameters of the machined FRP product along with the Material Removal Rate (MRR) of the machining process have been optimized simultaneously. The Fuzzy Inference System (FIS) has been proposed for providing feasible means for the meaningful aggregation of multiple objective functions into an equivalent single performance index (MPCI). This Multi-Performance Characteristic Index (MPCI) has been optimized using the Taguchi method. The approach adapted here is capable of overcoming limitations/ assumptions of existing optimization methodologies available in the literature. (original abstract)
Pełny tekst
  1. Ali, Y.M., Zhang, L.C., 1999. Surface roughness prediction of ground components using a fuzzy logic approach, Journal of Materials Processing Technology, 89-90, pp. 561-568.
  2. Bagci, E., I¸sık, B., 2006. Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN, International Journal of Advanced Manufacturing Technology, 31, pp. 10-17.
  3. Basheer, A.C., Dabade, U.A, Joshi, S.S, Bhanuprasad, V.V., Gadre, V.M., 2008. Modeling of surface roughness in precision machining of metal matrix composites using ANN', Journal of Materials Processing Technology, 197, pp. 439-444.
  4. Cox, E.A., 1992. Fuzzy Fundamentals, IEEE Spectrum, 29, pp. 58-61.
  5. Davim, J.P., Mata, F., 2005a. Optimisation of surface roughness on turning fibre-reinforced plastics (FRPs) with diamond cutting tools, International Journal of Advanced Manufacturing Technology, 26, pp. 319-323.
  6. Davim, J.P., Mata, F., 2005b. A new machinability index in turning fiber reinforced plastics, Journal of Materials Processing Technology, 170, pp. 436-440.
  7. Davim, J.P., Mata F., 2007. New machinability study of glass fibre reinforced plastics using polycrystalline diamond and cemented carbide (K15) tools, Materials and Design, 28, pp. 1050-1054.
  8. Davim, J.P., Silva, L.R., Festas, A. and Abr˜ao, A.M., 2009. Machinability study on precision turning of PA66 polyamide with and without glass fiber reinforcing, Materials and Design, 30, pp. 228-234.
  9. Datta, S., Bandyopadhyay, A. and Pal, P.K., 2008. Grey based Taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding, International Journal of Advanced Manufacturing Technology, 39, pp. 1136-1143.
  10. Datta, S., Nandi, G., Bandyopadhyay, A., 2009a. Application of entropy measurement technique in grey based Taguchi method for solution of correlated multiple response optimization problems: A case study in welding, Journal of Manufacturing Systems, 28, pp. 55-63.
  11. Datta, S., Nandi, G., Bandyopadhyay, A., Pal, P.K., 2009b. Application of PCA based hybrid Taguchi method for multi-criteria optimization of submerged arc weld: A case study, International Journal of Advanced Manufacturing Technology, 45(3-4), pp. 276-286.
  12. El-Sonbaty, I., Khashaba, U.A., Machaly, T., 2004. Factors affecting the machinability of GFR/epoxy composites, Composite Structure, 63, pp. 329-338.
  13. Jamal, Y Seheikh-Ahmad, 2009. Machining of Polymer Composites, Springer, 2009.
  14. Jawali, N.D., Siddeswarappa, B., Siddaramaiah, 2006. Physicomechanical Properties, Machinability, and morphological behavior of short glass fiber-reinforced nylon 6 composites, Journal of Reinforced Plastics and Composites, 25(13), pp. 1409-1418.
  15. Karnik, S.R., Gaitonde, V.N., Mata, F., Davim, J.P., 2008. Investigative Study on Machinability Aspects of Unreinforced and Reinforced PEEK Composite Machining using ANN Model, Journal of Reinforced Plastics and Composites, 27(7), pp. 751-768.
  16. Kumar, P., Barua, P.B., Gaindhar, J.L., 2000. Quality optimization (multi-characteristics) through Taguchi's technique and utility concept, Quality and Reliability Engineering International, 16, pp. 475-485.
  17. Liao, Hung-Chang, 2006. Multi-response optimization using weighted principal component, International Journal of Advanced Manufacturing Technology, 27(7-8), pp. 720-725.
  18. Lu, D., Antony, J., 2007. Optimization of multiple responses using a fuzzy-rule based inference system, International Journal of Production Research, 40(7), pp. 1613-1625.
  19. Mendel, J.M., 1995. Fuzzy Logic Systems for Engineering: A Tutorial, IEEE Proc., 83, pp. 345-377.
  20. Mohan, N.S., Ramachandra, A., Kulkarni, S.M., 2005. Influence of process parameters on cutting force and torque during drilling of glass-fiber polyester reinforced composites, Composite Structures, 71, pp. 407-413.
  21. Palanikumar, K., 2007. Modeling and analysis for surface roughness in machining glass fiber reinforced plastics using response surface methodology, Materials and Design, 28, pp. 2611-2618.
  22. Palanikumar, K., 2008. Application of Taguchi and response surface methodologies for surface roughness in machining glass fiber reinforced plastics by PCD tooling, International Journal for Advanced Manufacturing Technology, 36, pp. 19-27.
  23. Palanikumar, K., Davim, J.P., 2008. Mathematical model to predict tool wear on the machining of glass fiber reinforced plastic composites, Materials and Design, 28, pp. 2008-2014.
  24. Palanikumar, K., Davim, J.P., 2009. Assessment of some factors influencing tool wear on the machining of glass fiber-reinforced plastics by coated cemented carbide tools, Journal of Materials Processing Technology, 209, pp. 511-519.
  25. Palanikumar, K., Karunamoorthy, L., Karthikeyan, R., 2006. Assessment of factors influencing surface roughness on the machining of glass fiber-reinforced polymer composites, Materials and Design, 27, pp. 862-871.
  26. Palanikumar, K., Mata, F., Davim, J.P., 2008. Analysis of surface roughness parameters in turning of FRP tubes by PCD tool, Journal of Materials Processing Technology, 204, pp. 469-474.
  27. Routara, B.C., Mohanty, S.D., Datta, S., Bandyopadhyay, A., Mahapatra, S.S., 2010. Combined Quality Loss (CQL) concept in PCA based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 Brass in cylindrical grinding, International Journal of Advanced Manufacturing Technology, 51, pp. 135-143.
  28. Sahoo, P., 2005. Engineering Tribology, Prentice Hall of India, New Delhi.
  29. Sait, A. Naveen, Aravindan, S., Haq, A. Noorul, 2008. Optimisation of machining parameters of glass-fiber-reinforced plastic (GFRP) pipes by desirability function analysis using Taguchi technique, International Journal of Advanced Manufacturing Technology, DOI 10.1007/s00170-008-1731-y (Article in Press).
  30. Santhanakrishnan, G., Krishnamurthy, R., Malhotra, S.K., 1988. Machinability characteristics of fibre reinforced plastics composites, Journal of Mechanical Working Technology, 17, pp. 195-204.
  31. Sivarao, Brevern, P., El-Tayeb, N.S.M., Vengkatesh, V.C., 2009. Mamdani fuzzy inference system modeling to predict surface roughness in laser machining, International Journal of Intellectual Information Technology, 2(1), pp. 12-18.
  32. Walia, R.S., Shan, H.S., Kumar, P., 2006. Multi-response optimization of CFAAFM process through Taguchi method and utility concept, Materials and Manufacturing Processes, 21, pp. 907-914.
  33. Yager, R.R., Filev, D.P., 1999. Essential of Fuzzy Modeling and Control, John Willey and Sons Inc., New York.
  34. Zadeh, L.A., 1976. Fuzzy-algorithm approach to the definition of complex or imprecise concept, International Journal of Man Machine Studies, 8, pp. 249-291.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu