BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Kress Dominik (University of Siegen), Pesch Erwin (University of Siegen)
Competitive Location under Proportional Choice: 1-Suboptimal Points on Networks
Decision Making in Manufacturing and Services, 2012, vol. 6, nr 1/2, s. 53-64, tab., rys., bibliogr. 17 poz.
Słowa kluczowe
Modele lokalizacji, Ekonomia matematyczna, Teoria grafów
Location models, Mathematical economics, Graph theory
This paper is concerned with a competitive or voting location problem on networks under a proportional choice rule that has previously been introduced by Bauer et al. (1993). We refine a discretization result of the authors by proving convexity and concavity properties of related expected payoff functions. Furthermore, we answer the long time open question whether 1-suboptimal points are always vertices by providing a counterexample on a tree network. (original abstract)
Pełny tekst
  1. Bandelt, H.-J. (1985), Networks with Condorcet solutions. European Journal of Operational Research, 20(3), 314-326.
  2. Bauer, A., Domschke,W., and Pesch, E. (1993), Competitive location on a network. European Journal of Operational Research, 66(3), 372-391.
  3. Birmingham Council (2011), Strategy for special provision (S4SP) guidance. Last accessed on 08-04-2011.
  4. Gross, J. L. and Yellen, J. (2004), Fundamentals of graph theory. In Gross, J. L. and Yellen, J., editors, Handbook of Graph theory, pp. 2-19. CRC Press, Boca Raton.
  5. Hakimi, S. L. (1964), Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12(3), 450-459.
  6. Hakimi, S. L. (1986), p-median theorems for competitive locations. Annals of Operations Research, 6(4), 77-98.
  7. Hakimi, S. L. (1990), Locations with spatial interactions: Competitive locations and games. In Mirchandani, P. B. and Francis, R. L., (eds.), Discrete Location Theory, pp. 439-478. Wiley, New York.
  8. Hansen, P. and Labb´e, M. (1988), Algorithms for voting and competitive location on a network. Transportation Science, 22(4), 278-288.
  9. Hansen, P. and Thisse, J.-F. (1981), Outcomes of voting and planning: Condorcet, Weber and Rawls locations. Journal of Public Economics, 16(1), 1-15.
  10. Hansen, P., Thisse, J.-F., and Wendell, R. E. (1986), Equivalence of solutions to network location problems. Mathematics of Operations Research, 11(4), 672-678.
  11. Hansen, P., Thisse, J.-F., and Wendell, R. E. (1990), Equilibrium analysis for voting and competitive location problems. In Mirchandani, P. B. and Francis, R. L. (eds.), Discrete Location Theory, pp. 479-501. Wiley, New York.
  12. Hooker, J. N., Garfinkel, R. S., and Chen, C. K. (1991), Finite dominating sets for network location problems. Operations Research, 39(1), 100-118.
  13. Hotelling, H. (1929), Stability in competition. The Economic Journal, 39(153), 41-57.
  14. Kress, D., Pesch, E. (2012), Sequential competitive location on networks. European Journal of Operational Research, 217(3), 483-499.
  15. Labb´e, M. (1985), Outcomes of voting and planning in single facility location problems. European Journal of Operational Research, 20(3), 299-313.
  16. Simpson, P. B. (1969). On defining areas of voter choice: Professor Tullock on stable voting. The Quarterly Journal of Economics, 83(3), 478-490.
  17. Swamy, M. N. S., Thulasiraman, K. (1981), Graphs, Networks, and Algorithms. Wiley, New York.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu