BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Zaborski Artur (Uniwersytet Ekonomiczny we Wrocławiu)
Tytuł
Zastosowanie algorytmu SMACOF do badań opartych na prostokątnej macierzy preferencji
The Application of SMACOF Algorithm in Research Based on Rectangular Preference Matrix
Źródło
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu. Taksonomia (18), 2011, nr 176, s. 262-271, bibliogr. 8 poz.
Research of Wrocław University of Economics
Tytuł własny numeru
Klasyfikacja i analiza danych - teoria i zastosowania
Słowa kluczowe
Skalowanie wielowymiarowe
Multidimensional scaling
Uwagi
streszcz., sum.
Abstrakt
SMACOF jest strategią skalowania wielowymiarowego, wykorzystującą metodę majoryzacji, która aproksymuje w kolejnych cyklach iteracyjnych minimalne wartości funkcji STRESS. Celem artykułu jest prezentacja metodologii skalowania wielowymiarowego za pomocą dostępnego w środowisku R algorytmu SMACOF i jego modyfikacji na potrzeby prostokątnej macierzy preferencji. Na zakończenie zaprezentowano przykład, w którym wykorzystano funkcję smasofRect pakietu smacof.(abstrakt oryginalny)

SMACOF is a strategy of multidimensional scaling which uses iterative majorization method to get increasingly better estimates of STRESS function. The aim of the paper is to present the methodology of multidimensional scaling by means of SMACOF algorithm which is implemented in an R environment and the modification of this algorithm when the data are in rectangular preference matrix. Finally, an example is presented in which the smacofRect function of smacof package is used.(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Borg I., Groenen P., Modern Multidimensional Scaling. Theory and Applications, Springer-Verlag, New York 2005.
  2. De Leeuw J., Heiser W.J., Convergence of Correction-matrix Algorithms for Multidimensional Scaling, [w:] J.R. Barra, F. Brodeau, G. Romier, B. van Cutsem (red.), Recent Developments in Statistics, North-Holland, Amsterdam 1977, s. 133-145.
  3. De Leeuw J., Mair P., Multidimensional Scaling Using Majorization: SMACOF in R, Department of Statistics, UCLA. Department of Statistics Papers, Paper 2008010903, http://repositories.cdlib. org/uclastat/papers/2008010903.
  4. Green P.E., Rao V.R., Applied Multidimensional Scaling, Holt, Rinehart and Winston, New York 1972.
  5. Groenen P.J.F., The Majorization Approach to Multidimensional Scaling: Some Problems and Extensions, DSWO Press, Leiden University, Leiden 1993.
  6. Kruskal J.B., Multidimensional scaling by optimising goodness of fit to a nonmetric hypothesis, "Psychometrika" 1964, 29, s. 1-27.
  7. Zaborski A., Skalowanie wielowymiarowe w badaniach marketingowych, Wyd. Akademii Ekonomicznej we Wrocławiu, Wrocław 2001.
  8. Zaborski A., Wykorzystanie metody majoryzacji funkcji dopasowania w modelach różnic indywidualnych, [w:] K. Jajuga, M. Zalesiak (red.), Klasyfikacja i analiza danych - teoria i zastosowania, Taksonomia 17, Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu nr 107, Wrocław 2010, s. 181-189.
Cytowane przez
Pokaż
ISSN
1899-3192
1505-9332
Język
pol
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu