BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Singh G. N. (Indian School of Mines, India), Priyanka Kumari (Indian School of Mines, India)
Tytuł
Estimation of Population Mean at Current Occasion in Presence of Several Varying Auxiliary Variates in Two-Occasion Successive Sampling
Źródło
Statistics in Transition, 2010, vol. 11, nr 1, s. 105-126, tab., bibliogr. s. 125-126
Słowa kluczowe
Estymacja, Badania reprezentacyjne, Statystyka
Estimation, Sampling survey, Statistics
Uwagi
summ.
Abstrakt
The present work intended to emphasize the role of several varying auxiliary variates at both the occasions to improve the precision of estimates at current occasion in two-occasion successive sampling. Two different efficient estimators are proposed and their theoretical properties are examined. Relative comparison of efficiencies of the proposed estimators with the sample mean estimator when there is no matching from previous occasion, and the optimum successive sampling estimator when no auxiliary information is used have been incorporated. Empirical studies are significantly justifying the composition of proposed estimators. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. BIRADAR, R. S. and SINGH, H. P. (2001). Successive sampling using auxiliary information on both occasions. Cal. Stat. Assoc. Bull. 51: 243-251.
  2. CHATURVEDI, D. K. and TRIPATHI, T. P. (1983). Estimation of population ratio on two occasions using multivariate auxiliary information. Jour. Ind. Statist. Assoc., 21: 113-120.
  3. COCHRAN, W. G. (1977): Sampling Techniques. New York: John Wiley & Sons.
  4. DAS, A. K. (1982). Estimation of population ratio on two occasions. Jour Ind. Soc. Agr. Statist. 34: 1-9.
  5. ECKLER, A. R. (1955). Rotation sampling. Ann. Math. Stat., 26, 664-685.
  6. FENG, S. and ZOU, G. (1997). Sample rotation method with auxiliary variable. Commun. Statist. Theo-Meth. 26, 6: 1497-1509.
  7. GUPTA, P. C. (1979). Sampling on two successive occasions. Jour. Statist. Res. 13: 7- 16.
  8. JESSEN, R. J. (1942). Statistical investigation of a sample survey for obtaining farm facts. In: Iowa Agricultural Experiment Station Road Bulletin No. 304: 1-104, Ames, USA.
  9. PATTERSON, H. D. (1950). Sampling on successive occasions with partial replacement of units. Jour. Royal Statist. Assoc., Ser. B, 12: 241- 255.
  10. PRIYANKA, K. (2008). On the use of model based techniques and development of estimation procedures in search of good rotation patterns on successive occasions and its applications. Unpublished Ph. D. thesis submitted to the Indian School of mines, Dhanbad.
  11. RAO, J. N. K. and GRAHAM, J. E. (1964). Rotation design for sampling on repeated occasions. Jour. Amer. Statist. Assoc. 59: 492-509.
  12. SEN, A. R. (1971). Successive sampling with two auxiliary variables. Sankhya, Ser. B, 33: 371-378.
  13. SEN, A. R. (1972). Successive sampling with p (p > 1) auxiliary variables. Ann. Math. Statist. 43: 2031-2034.
  14. SEN, A. R. (1973). Theory and application of sampling on repeated occasions with several auxiliary variables. Biometrics 29: 381-385.
  15. SINGH, V. K., SINGH, G. N. and SHUKLA, D. (1991). An efficient family of ratio-cum-difference type estimators in successive sampling over two occasions. Jour. Sci. Res. 41 C: 149-159.
  16. SINGH, G. N. and SINGH, V. K. (2001). On the use of auxiliary information in successive sampling. Jour. Ind. Soc. Agric. Statist. 54: 1-12.
  17. SINGH, G. N. (2003). Estimation of population mean using auxiliary information on recent occasion in h occasions successive sampling. Statistics in Transition 6: 523 -532.
  18. SINGH, G. N. (2005). On the use of chain-type ratio estimator in successive sampling. Statistics in Transition 7: 21-26.
  19. SINGH, G. N. and PRIYANKA, K. (2006). On the use of chain-type ratio to difference estimator in successive sampling. IJAMAS 5, S06: 41-49.
  20. SINGH, G. N. and PRIYANKA, K. (2007). On the use of auxiliary information in search of good rotation patterns on successive occasions. BSE 1, A07: 42-60.
  21. SINGH, G. N. and PRIYANKA, K. (2008 a). Search of good rotation patterns to improve the precision of estimates at current occasion. Commun. Statist. Theo-Meth 37, 3: 337-348.
  22. SINGH, G. N. and PRIYANKA, K. (2008 b). On the use of several auxiliary variates to improve the precision of estimates at current occasion. Journal of Indian Society of Agricultural Statistics, 62, 3, 253-265.
  23. SUKHATME, P. V., SUKHATME, B. V., SUKHATME, S. and ASOK, C. (1984). Sampling theory of surveys with applications. Iowa State University Press, Ames, Iowa (USA) and Indian Society of Agricultural Statistics, New Delhi (India).
Cytowane przez
Pokaż
ISSN
1234-7655
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu