BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Al-Omari Amer Ibrahim (Jerash Private University, Jordan), Ibrahim Kamarulzaman (University Kebangsaan Malaysia), Jemain Abdul Aziz (University Kebangsaan Malaysia), Al-Hadhrami Said Ali (College of Applied Sciences, Nizwa, Oman)
Tytuł
Multistage Balanced Groups Ranked Set Samples for Estimating the Population Median
Źródło
Statistics in Transition, 2009, vol. 10, nr 2, s. 223-233, tab., bibliogr. s. 232-233
Słowa kluczowe
Estymatory, Estymacja, Dobór próby badawczej
Estimators, Estimation, Selection of test methods
Uwagi
summ.
Abstrakt
A multistage balanced groups ranked set samples (MBGRSS) method and its properties for estimating the population median is considered. The suggested estimator is compared to those obtained based on simple random sampling (SRS) and the ranked set sampling (RSS) methods. The MBGRSS estimator of the population median is found to be unbiased if the underlying distribution is symmetric and has a small bias if the underlying distribution is asymmetric, the bias is decreasing in r (r is the number of stage). It is found that, MBGRSS is as efficient as RSS when m = 3 and r = 1, and it is more efficient than RSS for r > 1. However, the efficiency of MBGRSS is increasing in r for specific value of the sample size whether the underlying distribution is symmetric or asymmetric. Real data is used to illustrate the method. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. AL-OMARI, A.I. (1999). Multistage ranked set sampling, Master Thesis, Department of Statistics, Yarmouk University, Jordan
  2. AL-OMARI, A.I. and JABER, K. (2008). Percentile double ranked set sampling, Journal of Mathematics and Statistics. 4 (1): 60-64.
  3. AL-SALEH, M. F. and AL-OMARI, A. I. (2002). Multistage ranked set sampling, Journal of Statistical Planning and Inference. 102(2): 273-286.
  4. DELL, T. R. and CLUTTER, J. L. (1972). Ranked set sampling theory with order statistic background. Biometrics, 28: 545-553.
  5. JEMAIN, A. A. and AL-OMARI, A. I. (2006). Multistage median ranked set samples for estimating the population mean. Pakistan Journal of Statistics. 22(3): 195-207.
  6. JEMAIN, A. A., AL-OMARI, A. I., and IBRAHIM, K. (2007). Multistage extreme ranked set sampling for estimating the population mean. Journal of Statistical Theory and Applications. 6(4): 456-471.
  7. MCINTYRE, G. A. (1952). A method for unbiased selective sampling using ranked sets, Australian Journal of Agricultural Research. 3: 385-390.
  8. MUTTLAK, H. A. (2003a). Investigating the use of quartile ranked set samples for estimating the population mean. Journal of Applied Mathematics and Computation. 146: 437-443.
  9. MUTTLAK, H. A. (2003b) Modified ranked set sampling methods. Pakistan Journal of Statistics. 19(3): 315-323.
  10. MUTTLAK, H. A. (1997). Median ranked set sampling, Journal of Applied Statistical sciences. 6(4): 245-255.
  11. OZTURK, O. and DESHPANDE, J.V. (2006). Ranked-set sample nonparametric quantile confidence intervals. Journal of Statistical Planning and Inference. 136, 570-577.
  12. SAMAWI, H, ABU-DAYYEH, W and AHMED, S. (1996). Extreme ranked set sampling, The Biometrical Journal. 30: 577-586.
  13. TAKAHASI, K. and WAKIMOTO, K. (1968). On unbiased estimates of the population mean based on the sample stratified by means of ordering, Annals of the Institute Statistical Mathematics. 20: 1-31.
  14. ZHENG, G. and MODARRES, R. (2006). A robust estimate of the correlation coefficient for bivariate normal distribution using ranked set sampling. Journal of Statistical Planning and Inference. 136 (2006) 298-309
  15. TIENSUWAN, M., SARIKAVANIJ, S. and SINHA, B.K. (2007). Nonnegative unbiased estimation of scale parameters and associated quantiles based on a ranked set sample. Communications in Statistics-Simulation and Computation, 36, 3-31.
  16. TSENG, Y.L. and SHAO, S.W. (2007). Ranked-Set-Sample-Based Tests for Normal and Exponential Means. Communications in Statistics-Simulation and Computation, 36: 761-782.
Cytowane przez
Pokaż
ISSN
1234-7655
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu