BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Khare B. B. (Banaras Hindu University, India), Sinha R. R.
Tytuł
On Class of Estimators for Population Mean Using Multi-Auxiliary Characters in the Presence of Non-Response
Źródło
Statistics in Transition, 2009, vol. 10, nr 1, s. 3-14, tab., bibliogr. s. 13-14
Słowa kluczowe
Estymatory, Estymacja
Estimators, Estimation
Uwagi
summ.
Abstrakt
Two classes of estimators for the population mean of the study character using multi-auxiliary characters with known population means in presence of non-response have been proposed. The expressions for bias, mean square error and conditions for attaining minimum mean square error of the proposed classes of estimators have been obtained. An empirical study has also been given in support of the problem. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. HANSEN, M.H. and HURWITZ, W.N. (1946): The problem of nonresponse in sample surveys. Jour. Amer. Statist. Assoc., 41, 517-529.
  2. KHARE, B.B. (1983): Some problems of estimation using auxiliary character. Ph.D. Thesis submitted to B.H.U., Varanasi, India.
  3. KHARE, B.B. (2002): A class of estimators for population mean using auxiliary character in presence of soft core observations. Prog. of Maths., 36 (1 & 2), 1-9.
  4. KHARE, B.B. and SRIVASTAVA, S.R. (1980): On an efficient estimator of population mean using two auxiliary variables. Proc. Nat. Acad. Scie., India, 50(A), 209-214.
  5. KHARE, B.B. and SRIVASTAVA, S.R. (1981): A generalized regression ratio estimator for the population mean using two auxiliary variables. Aligarh Jour. Statist., 1(1), 43-51.
  6. KHARE, B.B. and SRIVASTAVA, S. (1996): Transformed product type estimators for population mean in presence of softcore observations. Proc. Math. Soc. BHU, 12, 29-34.
  7. KHARE, B.B. and SRIVASTAVA, S. (1997): Transformed ratio type estimators for the population mean in the presence of non-response. Commun. Statis.-Theory. Math., 26(7), 1779-1791.
  8. KHARE, B.B. and SRIVASTAVA, S. (2000): Generalised estimators for population mean in presence of nonresponse, Internal. J. Math. & Statist. Sci. 9(1), 75 -87.
  9. KHARE, B.B. and SRIVASTAVA, S. (2002): Study of two phase sampling ratio type estimators for population mean in presence of non-response under superpopulation model approach. Proc. Nat. Acad. Sci. India, 72 (A) IV, 331- 337.
  10. MOHANTI, S. (1967): Combination of regression and ratio estimate. Jour. Ind. Stat. Assoc., 5, 16- 29.
  11. MOHANTY, S. (1970): Contribution to the theory of sampling. Ph.D. thesis submitted to I.A.S.R.I., New Delhi.
  12. OLKIN, I. (1958): Multivariate ratio estimation for finite populations. Biometrika, 45, 154-165.
  13. RAO, P.S.R.S. (1986): Ratio estimation with subsampling the nonrespondents. Survey Methodology, 12(2), 217-230.
  14. RAO, P.S.R.S. (1990): Regression estimators with subsampling of nonrespondents. In-Data Quality Control, Theory and Pragmatics, (Eds.) Gunar E. Liepins and V.R.R. Uppuluri, Marcel Dekker, New York, (1990), pp.191-208.
  15. RAO, P.S.R.S. and MUDHOLKAR, G.S. (1967): Generalized multivariate estimators for the mean of a finite population. Jour. Amer. Statist. Assoc., 62, 1009-1012.
  16. REDDY, V.N. (1978): A study of use of prior knowledge on certain population parameters in estimation. Sankhya, C, 40, 29-37.
  17. SAHOO, L.N. (1986): On a class of unbiased estimators using multi-auxiliary information. Jour. Ind. Soc. Agri. Statist., 38, 379-382.
  18. SAMPATH, S. (1989): On the optimal choice of unknowns in Ratio-Type estimators. J. Indian Soc. Agricultural Statist., 41, 166-172.
  19. SHUKLA, G.K. (1965): Multivariate regression estimate. Jour. Ind. Stat. Assoc., 3, 202-211.
  20. SHUKLA, G.K. (1966): An alternate multivariate ratio estimate for finite population. Cal. Stat. Assoc. Bull., 15, 127-134.
  21. SRIVASTAVA, S.K. (1971): A generalized estimator for the mean of a finite population using multiauxiliary information. Jour. Amer. Statist. Assoc., 66, 404-407.
  22. SRIVASTAVA, S.K, and JHAJJ, H.S. (1983): A class of estimators of the population mean using multi-auxiliary information. Cal. Stat. Assoc. Bull., 32, 47-56.
Cytowane przez
Pokaż
ISSN
1234-7655
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu