BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Das Arabinda (Acharya Prafulla Chandra College)
Copula-based Stochastic Frontier Model with Autocorrelated Inefficiency
Central European Journal of Economic Modelling and Econometrics (CEJEME), 2015, vol. 7, nr 2, s. 111-126, tab., bibliogr. 42 poz.
Słowa kluczowe
Stochastyczny model graniczny, Modele stochastyczne, Funkcje połączeń, Symulacja Monte Carlo
Stochastic frontier model, Stochastic models, Copula Functions, Monte Carlo simulation
summ.; Klasyfikacja JEL: C15, C23, C51
The paper considers the modeling and estimation of the stochastic frontier model where the error components are assumed to be correlated and the inefficiency error is assumed to be autocorrelated. The multivariate Farlie-Gumble-Morgenstern (FGM) and normal copula are used to capture both the contemporaneous and the temporal dependence between, and among, the noise and the inefficiency components. The intractable multiple integrals that appear in the likelihood function of the model are evaluated using the Halton sequence based Monte Carlo (MC) simulation technique. The consistency and the asymptotic efficiency of the resulting simulated maximum likelihood (SML) estimators of the present model parameters are established. Finally, the application of model using the SML method to the real life US airline data shows significant noise-inefficiency dependence and temporal dependence of inefficiency. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Pełny tekst
  1. Aigner D., Lovell K. and Schmidt P. (1977), Formulation and Estimation of Stochastic Frontier Production Function Models, Journal of Econometrics, 1977, 6, 21-37.
  2. Bandyopadhyay D. and Das A. (2006), On measures of Technical Inefficiency and Production Uncertainty in Stochastic Frontier Production Model with Correlated Error Components, Journal of Productivity Analysis, Vol. 26, No. 2, 165-180.
  3. Battese G. and Corra G. (1977), Estimation of a Production Frontier Model with Application to the Pastoral Zone off Eastern Australia, Australian Journal of Agricultural Economics, 21, 169-179.
  4. Battese G. E. and Coelli T. J. (1988), Prediction of Firm Level Technical Efficiencies with a Generalized Frontier Production Function and Panel Data, Journal of Econometrics, 38, 387-399.
  5. Battese G. E. and Coelli T. J. (1992), Frontier Production Functions, Technical Efficiency and Panel Data: With Application to Paddy Farmers in India, Journal of Productivity Analysis, 3:1, 153-169.
  6. Bhat C. R. (2001), Quasi-random Maximum Simulated Likelihood Estimation of the Mixed Multinomial Logit Model, Transportation Research,35, Part B,677-693.
  7. Burns R. C. J. (2004), The Simulated Maximum Likelihood Estimation of Stochastic Frontier Models with Correlated Error Components, Unpublished Dissertation, Department of Econometrics and Business Statistics, The University of Sydney, Australia.
  8. Cornwell C., Schmidt P. and Sickles R. C. (1990), Production Frontiers with Cross-sectional and Time-series Variation in Efficiency Levels, Journal of Econometrics, 46:1/2, 185-200.
  9. Embrechts P., Lindskog F. and McNeil A. (2001), Modelling Dependence with Copulas and Applications to Risk Management, [in:] Rachev S. [eds.], Handbook of Heavy Tailed Distributions in Finance, Elsevier, Ch. 8, 329-384.
  10. Fernández C., Osiewalski J. and Steel M. F. J. (1997), On the Use of Panel Data in Stochastic Frontier Models with Improper Priors, Journal of Econometrics, 79, 169-193.
  11. Geweke J., Keand M. and Runkle D. (1994), Statistical Inference in the Multinomial, Multiperiod Probit Model, Review of Economics and Statistics, 76, 609-632.
  12. Gourieroux C. and Monfort A. (1996), Simulation-Based Econometric Methods, Oxford University Press, Oxford.
  13. Greene W. H. (1995), LIMDEP, Version 7.0 User's Manual. Econometric Software, Inc: New York.
  14. Greene W. H. (1997), Frontier Production Functions, [in:] Pesaran M.H. and Schmidt P. [eds.],Handbook of Applied Econometrics, Volume II: Microeconomics. Blackwell: Oxford.
  15. Greene W. H. (2003), Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function, Journal of Productivity Analysis, 19, 179-190.
  16. Griffin, J. E. and Steel M. F. J. (2007), Bayesian Stochastic Frontier Analysis using WinBUGS, Journal of Productivity Analysis, 27, 163-176.
  17. Jondrow J., Lovell C. A. K., Materov I. and Schmidt P. (1982), On the Estimation of Technical Inefficiency in the Stochastic Frontier Production Function Model, Journal of Econometrics, 19, 233-238.
  18. Haan P. and Uhlendorff A. (2006), Estimation of Multinomial logit models with unobserved heterogeneity using maximum simulated likelihood, Stata Journal, 6,229-245.
  19. Hajivassiliou V. and McFadden D. (1998), The Method of Simulated Scores for the Estimation of Limited-Dependent Variable Models, Econometrica, 66, 863-896.
  20. Halton J. (1960), On the Efficiency of Certain Quasi-Random Sequences of Points in Evaluating Multi-Dimensional Integrals, Numerische Mathematik, 2, 84-90.
  21. Koop G., Osiewalski J. and Steel M. F. J. (1994), Bayesian Efficiency Analysis with a Flexible Form: The AIM Cost Function, Journal of Business and Economic Statistics, 12, 339-346.
  22. Koop G., Steel M. F. J. and Osiewalski J. (1995), Posterior analysis of stochastic frontier models using Gibbs sampling, Computational Statistics, 10, 353-373.
  23. Koop G., Osiewalski J. and Steel M. F. J. (1997), Bayesian Efficiency Analysis through Individual Effects: Hospital Cost Frontiers, Journal of Econometrics,76, 77-105.
  24. Koop G., Osiewalski J. and Steel M. F. J. (1999), The Components of Output Growth: A Stochastic Frontier Analysis, Oxford Bulletin of Economics and Statistics, 61, 455-87.
  25. Kumbhakar S. C. (1987), The specification of Technical and Allocative Inefficiency in Stochastic Production and Profit Frontiers, Journal of Econometrics, 34, 335-348.
  26. Kumbhakar S. and Lovell K. (2000),Stochastic Frontier Analysis, Cambridge University Press, Cambridge.
  27. Laroque G. and Salanié B. (1989), Estimation of Multimarket Fix-price Models: An Application of Pseudo-Maximum Likelihood methods, Econometrica, 57,831-860.
  28. Lee L. F. (1995), Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models, Econometric Theory, 11, 437-483.
  29. Lee L. F. (1999), Statistical Inference with Simulated Likelihood Functions, Econometric Theory, 15, 337-360.
  30. Lee Y. H. and Schmidt P. (1993), A Production Frontier Model with Flexible Temporal Variation in Technical Inefficiency, [in:] Fried H. O., Lovell C. A. K.and Schmidt S. S., [eds.],The Measurement of Productive Efficiency: Techniquesand Applications, New York: Oxford University Press.
  31. McFadden D. (1989), A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration, Econometrica, 57, 995-1026.
  32. Meeusen W. and van den Broeck J. (1977), Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error, International Economic Review, 18, 435-444.
  33. Nelson R. B. (1999),An Introduction to Copulas, Springer-Verlag: New York.
  34. Osiewalski J. and Steel M. F. J. (1998), Numerical Tools for Bayesian Analysis of Stochastic Frontier Models, Journal of Productivity Analysis, 10, 103-117.
  35. Pal M. (2004), A Note on a Unified Approach to the Frontier Production Function Models With Correlated Non-Normal Error Components: The Case of Cross Section Data. Indian Economic Review, 39, 7-18.
  36. Pal, M., and A. Sengupta (1999), A Model of FPF with Correlated Error Components: An Application to Indian Agriculture, Sankhya,61, Series B, 337-350.
  37. Pitt M. and Lee L. (1981), The Measurement and Sources of Technical Inefficiency in Indonesian Weaving Industry, Journal of Development Economics, 9, 43-64.
  38. Sklar A. (1959), Fonctions de Réepartition ânDimensions et Leurs Marges. Publications de l'Institut Statistique de l'Université de Paris, 8, 229-231.
  39. Sklar A. (1973), Random variables, joint distributions, and copulas, Kybernetika,9, 449-460.
  40. Smith M. D. (2008), Stochastic Frontier Model with Dependent Error Components, Econometrics Journal, 11, 172-192.
  41. van den Broeck J., Koop G., Osiewalski J. and Steel M. F. J. (1994), Stochastic frontier models: A Bayesian perspective, Journal of Econometrics, 61, 273-303.
  42. Xu J. J. (1996),Statistical Modelling and Inference for Multivariate and Longitudinal Discrete Response Data, Ph.D. thesis, Department of Statistics, University of British Columbia.
Cytowane przez
URI / DOI 10.24425/cejeme.2015.119212
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu